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ABSTRACT 

Background: Malnutrition continues to be a major health burden in developing countries. It is 

globally the most important risk factor for illness and death, with hundreds of millions of 

young children particularly affected. The mid-upper arm circumference (MUAC) and the 

standardized weight-for- length Z-score (WFLz) are two anthropometric measures that are 

used for the diagnosis of malnutrition. The two anthropometric measures have poor 

correlation in terms of their predictive capabilities.  

Design: A joint model was applied to data collected recently in a randomized, double blind, 

placebo-controlled trial to see which of these two anthropometric measures would be the 

better predictor of mortality in infants who were admitted to hospital with severe acute 

malnutrition and later discharged and followed up for one year. Typically longitudinal 

measures and event time data are modelled jointly by introducing shared random effects or by 

considering conditional distributions together with marginal distributions.  

Participants: The study population comprised of 1781 children admitted to hospital with 

evidence of an acute infectious disease and with severe malnutrition and who had care 

initiated and were stabilized. 

Results: Joint modelling showed that While WFLz was not significantly associated with 

mortality (p=0.202); MUAC had a high association with mortality (p=0.014) and was a 

predictor of children at risk of post-discharge mortality.  

Conclusion: Using joint modelling approach, MUAC was identified as superior predictor of 

mortality amongst children treated for complicated SAM.  
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CHAPTER 1: INTRODUCTION 

1.0 Introduction 

In some clinical studies, patients can be followed over a period of time, allowing for exposure 

measures to be serially recorded at multiple time points. The outcome of interest can be 

relapse of a disease, re-hospitalization or death, amongst others. A frequently encountered 

example of the latter case can be found in biomarker research, where clinical studies are 

designed to identify biomarkers with strong prognostic capabilities for survival time. The 

research questions in such studies often require separate analysis of recorded outcomes, but in 

many occasions interest may lie in studying the association of the biomarker and time-to-

event, Rizopoulos (2012). When the interest is on the latter case, then joint modeling of the 

longitudinal and time-to-event method is adopted. Examples include, human 

immunodeficiency virus (HIV) research in which a researcher could be interested in the 

association between CD4 cell counts and the time to Acquired Immune Deficiency Syndrome 

(AIDS), liver cirrhosis studies which investigate the association between serum bilirubin and 

the time to death, systolic blood pressure and a coronary event, prostate-specific antigen 

biomarker and prostate cancer recurrence, and hemoglobin, specifically HbA1c, levels and 

survival in type 2 diabetes, Zhang et al (2009), Proust-Lima,  and Taylor (2009). An important 

characteristic of medical conditions is their dynamic nature, that is, the rate of progression is 

not only different across patients but also dynamically changes in time within the same 

patient. This implies that the “true” potential of a biomarker in describing disease progression 

and its association with survival may only be revealed when repeated evaluations of the 

marker are considered together in analysis, Rizopoulos (2012). Joint modeling aims to answer 

such research questions involving the association structure between repeated measures and 

time to the event of interest. Joint modeling has been an active area of methodological 

research in the recent past, with one of the interests being dynamic predictions for either the 

survival or the longitudinal outcome, Rizopoulos (2012). The quality of this prediction 
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typically depends on the capability of the longitudinal marker itself in predicting future 

events, that is, the biological mechanism that the marker attempts to describe, and how 

strongly this mechanism is related to the event of interest. 

As suggested by Black et al (2003) and Bryce et al (2005), malnutrition is a major problem in 

itself and also the most important risk factor for childhood death in developing countries. 

Severe acute malnutrition (SAM) is defined by the World Health Organization (WHO) and 

the United Nation’s Children Education Fund (UNICEF) by a weight-for-length index of less 

than -3 z-score or a mid-upper arm circumference (MUAC) less than 115 mm, World Health 

Organization (1999). Severe acute malnutrition contributes to one million childhood deaths 

annually and complicated SAM is associated with high inpatient mortality rates, Brewster 

(2011). Inadequate attention to post-discharge issues has adverse implications because the 

available evidence suggests that in developing countries post-discharge deaths may be of 

similar (or higher) magnitude than inpatient deaths. A recent study conducted to explore 

excess pediatric mortality after discharge from Kilifi County Hospital found that child 

mortality was more than seven-fold higher among post-discharge children than among 

similarly-aged children in the community and that 4.5% of children who were discharged 

from hospital died within the subsequent year, Moisi et al (2011). 

Mid-upper-arm-circumference (MUAC) and the standardized weight-for-length Z-score 

(WFLz) are two anthropometric markers used in the assessment of nutritional status. For 

infants between 0 and 60 months, the World Health Organization (WHO) recommends the use 

of WFLz to define wasting, since it is independent of stunting in its description for wasting 

while MUAC is increasingly being recommended to field operations as the indicator of choice 

for screening and admission to community-based management of acute malnutrition (CMAM) 

programs Guevarra et al (2012).. The commonly used thresholds for global acute malnutrition 

(GAM) are WFLz< −2 or MUAC < 125 mm.  
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These two indicators (WFLz and MUAC) correlate poorly with only about 40 % of SAM 

cases identified by one indicator also diagnosed as such by the other World Health 

Organization (2009). For example, among severely malnourished children hospitalized in 

rural Kenya, 65.1 % of the WFLz −3 cases also had a MUAC < 115 mm, whereas 56 % of the 

MUAC < 115 cases were also identified by WFLz −3. In that study, 42.9 % of the SAM cases 

were identified by both indicators, Berkley et al (2005). Fernandez et al.(2010) reported that 

among 34,937 children between 6 and 59 months from 39 nutritional surveys, 75 % of the 

children with a WFLz <−3 did not have a MUAC < 115 mm.  

This study explored the post-discharge survival of children enrolled in a randomized 

controlled trial, Berkley et al. (2016), who were admitted to hospital with severe acute 

malnutrition, looking at their serial anthropometric measures and how these associate with 

mortality as a means of identifying infants at increased risk of post-discharge mortality. 

1.1 Problem Statement 

Malnutrition is a significant problem in developing countries and a strong risk factor for 

admission to hospital and death, Bryce et al. (2005). The two most commonly used 

anthropometric markers in the assessment of malnutrition (MUAC and WFLz) have very poor 

correlation in terms of predicting which infants are at risk of post discharge mortality due to 

malnutrition. This research aims to apply joint modelling to determine which of these two 

biomarkers is the more accurate and better predictor of children at risk of mortality due to 

malnutrition. 

1.2 Justification 

The two anthropometric markers that were being considered have poor correlation in terms of 

their predictive capabilities. This research aimed to apply joint modelling to determine which 

of the two anthropometric biomarkers is the better predictor of mortality. If a better predictor 
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is found, it can be translated as the standard tool in diagnosis of malnutrition and result in the 

reduction of mortality in infants with malnutrition. 

1.3 Null Hypotheses 

No difference in the predictive capability of the two anthropometric markers of malnutrition. 

1.4 Objective of the study 

The objective of this study was to create a joint model of serial anthropometric measures 

(MUAC and WFLz) and mortality. This model could possibly tell us which of the two 

anthropometric markers the better predictor of mortality in infants. 

1.5 Specific Objectives 

I. To determine the association between the anthropometric indicators (MUAC and WFLz) 

with mortality in children with severe acute malnutrition. 

II.  To investigate the predictive capabilities of MUAC and WFLz on mortality. 

III.  To determine which of the two anthropometric indicators (MUAC and WFLz) is the 

better predictor of mortality in children with severe acute malnutrition. 
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CHAPTER 2: LITEARTURE REVIEW 

2.0 Anthropometry and malnutrition 

For infants aged between 0 and 60 months, World Health Organization (WHO) recommends 

the use of WFLz to define wasting, World Health Organization (1999). A WFLz lower than 

−3 standard deviations of the international reference population can be used as an indicator of 

SAM, World Health Organization (2009). Mid-upper arm circumference has also been 

endorsed by the WHO, the World Food Programme (WFP), the United Nations System 

Standing Committee on Nutrition (SCN) and the United Nations Children’s Fund (UNICEF) 

as a suitable tool for diagnosing severe acute malnutrition (wasting) and as criteria for 

admission into therapeutic feeding programs, World Health Organization (1999). Many 

agencies are beginning to move towards using MUAC as a basis for admitting children to 

both therapeutic and supplementary feeding programs, Myatt et al. (2008). A study by 

Mwangome et al (2012) showed that MUAC was a more reliable marker in determining 

children aged between 6-14 weeks who are at elevated risk of death as compared to WFLz. 

These two anthropometric measurements are critical tools in predicting death and can be used 

as timely indicators to allow for early intervention. 

2.1 Post-discharge mortality 

A recent study conducted in Bangladesh reported high mortality within 3 months of discharge 

of Bangladeshi children following hospitalization with severe malnutrition and pneumonia. 

The reported post-discharge mortality of 8.7% was similar to the inpatient mortality. Most of 

the post-discharge deaths occurred within 1 month following discharge Chisti et al. 

(2014).Another study that included 393 HIV-uninfected Malawian children with severe 

malnutrition, reported 44 (11%) deaths within 3 months, Kerac et al. (2009). A study 

conducted to explore excess pediatric mortality after discharge from Kilifi County Hospital 

found that child mortality was more than seven-fold higher among post-discharge children 
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than among similarly-aged children in the community and that 4.5% of children who were 

discharged from hospital died within the subsequent year, Moisi J., Gatakaa H.. and Berkley J. 

(2011).  

2.2 Joint modelling 

Joint modelling is used to estimate the association between survival times and endogenous 

time-dependent covariates. The longitudinal outcomes (biomarkers or other serial measures) 

are referred to as endogenous time-dependent covariates in a survival modelling framework. 

Important features of endogenous time-dependent covariates are: (1) they require survival of 

the patient for them to exist, (2) they are measured with error and (3) their complete path up to 

any time t is not fully observed, that is, the marker of the patient is only known at days when 

the patients provide the measurements, Rizopoulos (2012). When primary interest is in the 

association between such endogenous time-dependent covariates and survival, a modeling 

framework has been introduced, known as the joint modeling framework for longitudinal and 

time-to-event data, Faucett and Thomas (1996) and Tsiatis and Davidian (2004). 

The idea behind joint models is to combine two sub-models, a survival model and a suitable 

model for the repeated measurements that will account for its special features. The sub-

models are specified below, specifically with regards to the approach of Prof Dimitris 

Rizopoulos as shown in Rizopoulos (2012). 

To assist in introducing this modeling framework, some notations will be used. The true event 

time for the ��� subject will be denoted by ��∗, �� will denote the observed event time, defined 

as the minimum of the potential censoring time �� and ��∗, and by 	� = ����∗ ≤ ��� the event 

indicator. For the endogenous time-dependent covariates, let ����� denote its observed value 

at time point t for the ��� subject. It should be noted that ����� is not observed for any time t, 

but rather only at the very specific occasions ��� at which measurements were taken. Thus, the 

observed longitudinal data consist of the measurements ��� = ��������, � = 1, … , ���. 
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2.3 Survival sub model 

A new term ����� that denotes the true and unobserved value of the longitudinal outcome at 

time t is introduced. Note that ����� is different from �����, with the latter having 

measurement error value of the longitudinal outcome at time �. To quantify the strength of the 

association between ����� and the risk for an event, a straight forward approach is to 

postulate a relative risk model of the form: 

   ����|ℳ����, ��� = � ���exp!"#�� + %�����&� > 0                                (2.3.1) 

Where ����� = !���)�, 0 ≤ ) < �& is the history of the true but unobserved longitudinal 

process up to time point �, � �. � is the baseline risk function and % is the parameter 

representing the longitudinal effect on hazard. Similarly, �� is a vector of baseline covariates 

associated with parameter vector ". The risk for an event at time � therefore depends on the 

baseline hazard, baseline covariates and the true value of the longitudinal covariate at that 

time. The risk ratio associated with unit changes of baseline covariates is given by exp(") and 

the relative change in the risk for a unit change in the true value of the longitudinal covariate 

is exp(%), Rizopoulos (2011). 

2.4 Longitudinal sub-model 

In the above definition of the survival model, the true unobserved value of the longitudinal 

covariate  ����� was used. Taking into account that the longitudinal information  ����� is 

collected with possible measurement errors, the first step towards measuring the effect of the 

longitudinal covariate to the risk for an event is to estimate �����, in order to reconstruct the 

complete true history  �����  for each subject. Then, the linear mixed model can be rewritten 

as, 

   

,-.
-/ ����� =  ����� + 0���� + 1����,�� =  2�#3 + 4�#5�,                        5� ~ 7�0, 8�1� ~ 7�0, 9:�;��                             

<  (2.4.1) 
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This mixed model formulation allows one to state that the longitudinal outcome �����is equal 

to the true level ����� plus an error term. An incorporated stochastic term 0���� can be added. 

This term is used to capture the remaining serial correlation in the observed measurements, 

which random effects are unable to capture. Considering that 0���� is considered as a mean-

zero stochastic process, independent of 5�and 1�. 
The equation is a linear mixed model which accounts for measurement error problems by 

postulating that the observed level of longitudinal outcome ����� comprises of true value 

�����  and a random error term,1����. If observations are taken on a regular basis, it is 

improper to disregard autocorrelation. However, it is difficult to implement a model with both 

random-effects and autocorrelation term, Tsiatis and Davidian (2004), therefore a random-

effects model was preferred due to its computational ease in implementation. By fitting the 

linear mixed submodel, the true biomarker value is estimated and the complete patient’s 

longitudinal history ����� is reconstructed. 

Statistical models are often built to provide predictions. When good quality predictions are of 

interest, it would be useful to combine all available information available for a patient in order 

to account for the biological interrelationships between the outcomes. The importance of 

combining serial sets of markers for prediction was empirically illustrated by Fieuws et al 

(2008), who noted that predictions of graft failure in a kidney transplant study based on a joint 

model using all recorded biomarkers of kidney functioning provided better predictions (in 

terms of early detection of patients at risk of renal graft failure), than those provided by 

separate analysis per marker.  
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CHAPTER 3: MATERIALS AND METHODS 

3.0 Study sites 

The trial was carried out at four sites, Coast Provincial General Hospital, Kilifi County 

Hospital, Malindi Sub-County Hospital and Mbagathi District Hospital. 

3.1 Study design 

The data used for this study came from a multicentre, double-blind, randomized, placebo-

controlled trial. In such a trial of a medical treatment, some (roughly half) of the participants 

are given the treatment, in this case Co-trimoxazole (CTX), others are given fake treatment 

(placebo), and neither the researchers nor the participants know in which arm of the study 

they were until the study ends (they are thus both “blind”). 

3.2 Demographic details 

Kilifi County Hospital serves a rural population the majority of who are farmers. Malindi 

Sub-County Hospital is within Kilifi County approximately 60km North of Kilifi town. It 

mainly serves a rural population that lives in a semi-arid area to the West and North to the 

border with Lamu District and also Malindi Town. Sixty eight percent of Kilifi District 

residents and 76% of Malindi District residents were estimated to live below the national 

poverty line in 2006.Coast Provincial General Hospital is the largest provincial hospital in 

Kenya and predominantly serves residents of Mombasa Town plus referrals from the entire 

coast region. Thirty eight percent of Mombasa District residents were estimated to live below 

the national poverty line in 2006. Mbagathi District Hospital is located near the Kibera 

informal settlement in Nairobi and serves populations living in informal settlements across the 

entire Nairobi region. In 2006, 38% of Nairobi District residents were estimated to live below 

the national poverty line. 
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3.3 Study population  

The study population comprised of children admitted to hospital with evidence of an acute 

infectious disease and with severe malnutrition and who had care initiated and were stabilized.  

3.4 Inclusion Criteria:  

Patients who were considered for the trial were aged between 2 months and 5 years. They had 

to have been diagnosed with severe malnutrition (severe malnutrition defined as: age 6 

months to 5 years: MUAC <11.5cm; age 2 to 6 months: MUAC <11cm) or kwashiorkor at 

any age (defined in current WHO guidelines (World Health Organization (2005)). A negative 

HIV rapid test or if under 18 months, HIV-1 PCR negative and no longer breastfeeding for at 

least 6 weeks. Potential participants should have been willing to remain within study area and 

come for all protocol specified visits. 

3.5 Apparatus and/or Instruments 

All children admitted to the study were weighed using an electronic scale (Seca 825, 

Birmingham UK) to 0.01 kg. Length was measured to 0.1 cm using an infantometer (Seca 

416, Birmingham UK) or stadiometer (Seca 215, Birmingham UK). Mid upper arm 

circumference was measured to 0.1m cm using a standard insertion tape (TALC, St. Albans, 

UK). Kwashiorkor was diagnosed on the basis of bilateral pitting pedal oedema, World Health 

Organization (2005). 

3.6 Data 

The data was collected by KEMRI-Wellcome Trust, Kilifi and entered into OpenClinica, 

Ngari et al (2014). The aim of the trial for which this data was collected was to find out 

whether daily cotrimoxazole prophylaxis could reduce mortality among severely 

malnourished children who are not infected with HIV, Berkley et al. (2016). The data was 

collected at two rural and to urban hospitals between November 2009 and March 2014. One 

thousand seven hundred and eighty one patients were recruited into the study. Follow-up was 

done on a monthly basis for six months after discharge from hospital and thereafter every 
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other month up to one year.  However, for this study, the data was limited to the subset of the 

first six-month period when children were on daily prophylaxis. In addition to the serial 

anthropometric measurements (WFLz and MUAC), the baseline covariates that were recorded 

were age, gender, pneumonia, diarrhea and oedema. 

3.7 Estimation in joint modelling 

Self and Pawitan proposed a joint model with a relative risk submodel of the form 

ℎᵢ��|?ᵢ���, @ᵢ� =  limD�→ Pr!� ≤  ��∗ < � + H�| ��∗ ≥ �, ?ᵢ���, @ᵢ}/H� 

                                        = ℎ ���exp!"#�� + %�����}� > 0            (3.7.1) 

 with an unspecified baseline risk function ℎ ���, and with the term exp !%�����} replaced by 

{1+  %�����}, such that the model would be linear in the random effects 5ᵢ. The authors 

proposed to estimate this joint model using a two-step inferential approach, in which at step 

one the random effects are estimated using a least-squares approach, and at step two these 

estimates are used to impute appropriate values of ?ᵢ��� that are substituted in the classical 

partial likelihood of the Cox model, Ye et al. (2008) Even though these approaches are 

relatively easy to implement with standard software, in many instances they produce biased 

results. This has been shown with a series of simulations studies, Henderson, Diggle, and 

Dobson  (2000). For this reason and instead of relying on approximations, the literature for 

this type of joint models has primarily focused on full likelihood approaches that eliminate 

this bias. 

The main estimation method that has been proposed for joint models is (semi parametric) 

maximum likelihood, Hsieh et al (2006). Moreover, Tsiatis and Davidian proposed a 

conditional score approach in which the random effects are treated as nuisance parameters, 

and they developed a set of unbiased estimating equations that yields consistent and 

asymptotically normal estimators, Lipsitz, S., Fitzmaurice, G., Ibrahim, J., Gelber, R., and 

Lipshultz, S. (2002) 
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The maximum likelihood estimates are derived as the modes of the log-likelihood function 

corresponding to the joint distribution of the observed outcomes. To define this joint 

distribution we will assume that the vector of time-independent random effects 5ᵢ underlies 

both the longitudinal and survival processes. This means that these random effects account for 

both the association between the longitudinal and event outcomes, and the correlation 

between the repeated measurements in the longitudinal process (conditional independence). 

Formally, we have that 

K��ᵢ, 	ᵢ, �ᵢ|5ᵢ; M�    =  K��ᵢ, 	ᵢ|5ᵢ; M� K��ᵢ|5ᵢ; M� and 

                                                K��ᵢ|5ᵢ; M� = ∏ K!�ᵢ��ȷᵢ|� 5ᵢ; M}         (3.7.2) 

                                      

Where M =  �M�P, MQP, MRP�P denotes the full parameter vector, with θt denoting the parameters 

for the event time outcome, θy the parameters for the longitudinal outcomes and θb the unique 

parameters of the random-effects covariance matrix, and yi is the ni × 1 vector of longitudinal 

responses of the i th subject. In addition, it is assumed that given the observed history, the 

censoring mechanism and the visiting process are independent of the true event times and 

future longitudinal measurements. As defined earlier, the visiting process is the mechanism 

(stochastic or deterministic) that generates the time points at which longitudinal 

measurements are collected, Lipsitz et al (2002), and for any time point t, define as observed 

history all available information for the longitudinal process prior to t. Practically speaking, 

these assumptions imply the belief that decisions on whether a subject withdraws from the 

study or appears at the clinic for a longitudinal measurement depend on the observed past 

history (longitudinal measurements and baseline covariates), but there is no additional 

dependence on underlying, latent subject characteristics associated with prognosis. 

Under these assumptions the log-likelihood contribution for the i th subject can be formulated 

as follows 
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log K� �ᵢ, 	ᵢ, �ᵢ; M� = log U K��ᵢ, 	ᵢ, �ᵢ, 5ᵢ; M�H5ᵢ 
                                = log K� �ᵢ, 	ᵢ|5ᵢ; M, 3�V∏ K!�ᵢ��ȷᵢ�|� 5ᵢ; My}XK�5ᵢ; M�H5ᵢ   (3.7.3)                

with the conditional density for the survival part log K� �ᵢ, 	ᵢ|5ᵢ; M, 3� taking the form 

 

K��ᵢ, 	ᵢ|5ᵢ; M, 3� = ℎᵢ��ᵢ|?ᵢ��ᵢ�Mᵢ, 3�YᵢZᵢ��ᵢ|?ᵢ��ᵢ�Mᵢ, 3� 

           = [ℎ ��ᵢ�exp !"#�� + %����ᵢ�}_Yᵢ × exp �− b ℎ �)�exp !"#�� + %���)�}H)�#ᵢ
      

        (3.7.4) 

where h0(·) can be any positive function of time, such as the piecewise-constant model below 

                                         ℎ ��� = c ℶe��fegh < � < fe�
i

ejh
                                          �3.7.5� 

where 0 = f < fh < f: <∙∙∙< fe denotes a split of the time scale, with f  being larger than 

the largest observed time, and ℶe denotes the value of the hazard in the interval [fegh, fe_. 
h0(·) can also be a positive function of the B-spline model below 

 

                                                          ℎ ��� = o + c oDpD
q

Djh
��, r�                                            �3.7.6� 

 

where oP =  o , oh,∙∙∙,oq are the spline coefficients, q denotes the degree of the B-splines basis 

functions B(·), and, with � = �t + r − 1 with �t  denoting the number of interior knots. 

h0(·) can also be the hazard function of any known distribution, and the survival function is 

given by the equation below 

 

Zᵢ��|?ᵢ���, @ᵢ� = Pr���∗ > �|?ᵢ���, @ᵢ� 

                                                        = exp �− U ℎ �)�exp !"#�� + %���)�}H)�
u

 
                �3.7.7� 
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The joint density for the longitudinal responses together with the random effects is given by 

the equation below 

                     K��ᵢ|5ᵢ; M�K�5ᵢ; M� = v K��ᵢ�����w
�

5ᵢ; MQ}K�5ᵢ; MR�                                      �3.7.8� 

= �2z9:�g;{/:exp !−||�� − |�3 − }�5�||:/29:}  × �2z�ge~: det�D�gh
:exp �−5�P8gh5�/2�  

Where rR denotes the dimensionality of the random-effects vector, and || 2 ||= ! ∑ 2�:� } 

denotes the Euclidean vector norm. 

3.8 Data analysis 

The data was analyzed using the R, R Core Team (2015), (version 3.2.3) statistical 

environment, with the joint modelling done using JM package, Rizopoulos (2010). R was 

chosen due to its simple, powerful and dynamic nature. In addition, the joint model that was 

fit used the same approach to that used by Dimitris Rizopoulos, who has implemented a 

number of joint modelling packages in R, Rizopoulos (2010) and Rizopoulos (2011). 

3.9 Joint modeling methodology 

For the time after discharge from hospital and for each of the longitudinal measures 

separately, a joint model was fitted. The basic model (assuming risk is dependent on the 

current value of the measure) was built in two stages. In stage one, the linear predictor of the 

survival sub-model only contained the effect of the measure. The sub-model was fitted with 

Weibull baseline hazard model. The fixed effects structure of the longitudinal sub-model only 

included the time evolution while the random structure had random slope and intercept. In 

stage two, the baseline covariates were added one by one in both the longitudinal and survival 

sub-models. The likelihood ratio test was used to test if the covariate was important or not at 

the 5% significance level. The longitudinal and survival sub-models were combined to create 

the final the joint model. The joint models were then compared to see which would give a 

better prediction of the event of interest. This was achieved by comparing them using 

Akaike’s information criterion (AIC), Akaike (1974), calculated as: 
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AIC = - 2 × loglikelihood+ 2k 

Where k is the number of parameters in the fitted model. This criterion finds balance between 

accuracy and complexity of the fitted model. The model with the smallest AIC is considered 

as the better predictor and is the preferred model.  

To improve the numerical stability of the models, the covariates were rescaled to unit 

magnitude by dividing each measure by the maximum value for that measure. 

For the WFLz, the basic longitudinal submodel (linear mixed effects model) was written as 

follows 

���4���� = ?���� + ����� 

   = 3 + 3h��� + 5� + 5�h� + �����                             (3.9.1) 

In the fixed-effects part we include the main effect of time and in the random-effects design 

matrix we include an intercept and a time term. A joint model of the following form was then 

fit. 

ℎ���� = ℎ ���exp !"ℵ� + %?����}     (3.9.2) 

Where ℵ� represents the baseline covariates. The above equation can thus be expanded to be 

of the form 

ℎ���� = ℎ ���exp !"₁���0����� + "₂8����ℎ�� + "₃��� + "₄��������� + %?����}  

(3.9.3) 
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CHAPTER 4: RESULTS 

4.1 Exploratory data analysis 

One thousand seven hundred and eighty one children were enrolled in the four sites. Coast 

general hospital in Mombasa County enrolled 849 children. Kilifi county hospital enrolled 

151 children. Malindi sub county hospital enrolled 271 children and Mbagathi hospital in 

Nairobi enrolled 507 children. All children at all the four sites were enrolled between 

20/11/2009 and 28/03/2014. Three children were excluded as ineligible leaving one thousand 

seven hundred and seventy eight children were included in the analysis.  

Eight hundred and eighty seven children were assigned to cotrimoxazole prophylaxis and 

eight hundred and ninety one assigned to placebo. Both longitudinal biomarkers had missing 

values. In addition, 126 patients had enrollment measurements but no post-discharge 

measurements. These patients were excluded from the analyses. The final analyses were thus 

done on 1652 patients. 

The mean age at enrollment was 12.75 (SD=8.91, range 2-55) and the mean WFLz and 

MUAC at enrollment were -3.34 and 10.56 respectively. Nine hundred and six (50.8 %) of the 

study participants were male. Three hundred (16.8 %) had oedematous malnutrition and 1024 

(57.5 %) were enrolled with diarrhea. Table 2(a) shows some selected baseline characteristics 

of children enrolled in the trial based on the serial anthropometric measures. 
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MUAC 

       Month 0        Month 1        Month 2        Month 3        Month 4       Month 5    Month 6 

       Diarrhea 

No 10.57 11.30 11.76 12.09 12.40 12.55 12.74 

Yes 10.55 11.35 11.91 12.20 12.46 12.64 12.86 

       Pneumonia 

No 10.71 11.58 12.16 12.44 12.69 12.88 13.04 

Yes 10.43 11.11 11.57 11.89 12.21 12.35 12.59 

       Sex 

       Female 10.57 11.32 11.80 12.09 12.35 12.50 12.72 

        Male 10.54 11.34 11.89 12.21 12.51 12.70 12.88 

WFLz 

       Diarrhea 

No -3.14 -2.40 -2.11 -1.84 -1.76 -1.72 -1.62 

Yes -3.38 -2.49 -1.96 -1.82 -1.65 -1.60 -1.47 

       Pneumonia 

No -3.41 -2.29 -1.80 -1.62 -1.49 -1.41 -1.33 

Yes -3.21 -2.59 -2.22 -2.05 -1.88 -1.87 -1.73 

       Sex 

  Female -3.09 -2.30 -1.90 -1.73 -1.63 -1.55 -1.44 

Male -3.48 -2.50 -2.14 -1.95 -1.76 -1.74 -1.63 

Table 2(a):  selected baseline characteristics of study participants based on MUAC and 

WFLz 

The primary event of interest of this study was death. The distribution of the number of deaths 

(210 in total) over the six month study period was as follows: 123 in the first month, 32 in the 

second month, 21 in the third month, 19 in the fourth month, 9 in the fifth month and 6 in the 
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sixth month. This indicates a decreasing risk over time. An overall increase was observed in 

the values of the two anthropometric indicators. This is shown in table 2(b). 

Month 0 1 2 3 4 5 6 

MUAC 10.56 11.33 11.85 12.15 12.44 12.61 12.81 

WFLz 3.28 2.45 2.02 1.85 1.70 1.65 1.54 

Deaths - 123 32 21 19 9 6 

Table 2(b): the average monthly anthropometric values and distribution of deaths. 

To investigate survival probabilities by the different baseline covariates, Kaplan-Meier curves 

were plotted. Figure 1 shows a Kaplan-Meier survival estimate, with the 95% confidence 

interval, for the time to death of all study participants. 

 

Figure 1: Kaplan-Meier survival estimate for time to death 
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Comparison of different pairs of survival curves was done using the log rank test. It tests the 

null hypothesis that there is no difference between the population survival curves (i.e. the 

probability of an event occurring at any time point is the same for each population). 

From figure 1a it seemed that male and female children had a very small difference in survival 

probabilities. The log-rank test showed no significant difference existed between the two 

groups (p-value= 0.579).  

 

Figure 1a: KM by gender 

Figure 1b shows the survival curves of patients with diarrhea and without diarrhea. Patients 

with diarrhea at admission had a better survival probability than those without. The log-rank 

test showed this difference to be significant (p-value= 0.014) 
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Figure 1b: KM by diarrhea 

 

Figure 2a suggests that there was no significant difference between patients placed on the 

different treatments. This implies that no significant difference existed in the survival of the 

patients on CTX ant those on placebo. This was confirmed by the log-rank test (p-value= 

0.968). 
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Figure 2a:  KM by treatment 

Figure 2b suggests a significant difference in the survival probability between study 

participant admitted with pneumonia and those admitted without pneumonia. The log-rank 

test indicates a highly significant difference in the survival probabilities of patients with 

pneumonia and those without pneumonia (p-value < 0.001). Patients without pneumonia had a 

higher survival probability than those with pneumonia. 
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                                       Figure 2b: KM by pneumonia 

 

Figure 3a shows a significant difference (log-rank test p-value = 0.026) in survival probability 

among the different sites. Patients enrolled in Kilifi county hospital seemed to have a better 

survival probability than their counterparts in the other sites.  
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Figure 3a:  KM by site  

 

Figure 3b suggests that patients admitted with oedema would have a higher post-discharge 

survival probability than those admitted without oedema. Out of the total of 1781 patients, 

only 300 were admitted with oedema. Even though patients with oedema seem to have a 

higher survival probability, it is not statistically significant (log-rank test p-value = 0.071) 
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                                        Figure 3b:  KM by oedema 

 

4.2 Weight for length z-score (WFLz) 

4.2.1 Mean structure 

Exploration of the mean structure was done using average profile plots. An overall as 

well as a different average profile for each of the different levels of the baseline covariates 

were plotted. From the average profile plot shown below in figure 4, an increasing trend was 

observed.  A sharp increase is seen during the first two months after the patient was 

discharged from hospital. 
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Figure 4: WFLz mean structure 

On average, female patients had a higher WFLz than male patients as shown in figure 4a. 
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Figure 4a: WFLz by gender 

Figure 4b suggests an insignificant difference in the mean WFLz between patients admitted 

with diarrhea and those without diarrhea. Figure 4c indicates that during the first month (post-

discharge), the WFLz between patients with pneumonia and those without was insignificant. 

But as from the second month, the difference between the WFLz of the two groups starts 

increasing. A somewhat constant and significant difference is observed until the end of the 

study (month six). 
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                   Figure 4b: WFLz by diarrhea  

 

 Figure 4c: WFLz by pneumonia 

Figure 4d shows the trends observed in the mean WFLz of the patients subjected to the 

different treatments (CTX and Placebo) 
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Figure 4d: WFLz by treatment 

4.2.2 Variance Structure 

The average evolution of the variance of WFLz as a function of time is shown in Figure 5. 

There is a sharp increase during the first month after discharge. After the first month the 

evolution of the variance of WFLz is fairly constant. 
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Figure 5: WFLz Variance structure 

 

4.3 Mid upper arm circumference (MUAC) 

4.3.1 Mean structure 

From the overall average profile plot in figure 6, a general linear trend was observed. 
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Figure 6: MUAC Variable: Mean structure 

Figure 6a suggests that there was no significant difference between the average MUAC values 

in the patients admitted with diarrhea and those without diarrhea. 
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Figure 6a: MUAC by diarrhea 

 

Figure 6b indicates that patients admitted with pneumonia had, on average, a lower MUAC as 

compared to their counterparts who were admitted without pneumonia. There was no 

difference in the average MUAC values of patients subjected to the different treatments. This 

is illustrated in figure 6c 
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Figure 6b: MUAC by pneumonia  

 

  Figure 6c: MUAC by treatment 

During the first month after discharge from hospital, there was no significant difference in the 

average MUAC values of males and females. This is shown on figure 6d. 
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Figure 6d: MUAC by gender 
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4.3.2 Variance structure 

The average evolution of variance as function of time is shown in Figure 3(b). The general 

evolution of the variance function is not constant. 

 

 

 

Figure 3(b): MUAC Variable: Variance structure 

  

4.4 WFLz results 

To start with, the basic survival submodel containing only WFLz as a covariate as described 

above was fitted. A likelihood ratio test was carried out at 5% level of significance to 

determine if any of the baseline covariates were significant. Treatment and site were found to 

be insignificant (p-value>0.05) while pneumonia (p-value=0.007), diarrhea (p-value=0.028) 

and age in months (p-value<0.001) were found to be significant. Site was dropped but 

treatment was retained in the model.  
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Initially the numerical integration was done using adaptive Gauss-Hermite rule with 15 points 

and then the points were gradually increased. Convergence was concluded when the 

parameter estimates and the AIC values were no longer changing. Analysis was conducted 

assuming a Weibull baseline hazard for the survival submodel.  

The results of the model are presented in table 3. The parameter % in equation 1 is reported as 

the ‘Assoct’ in the results of the joint model. This parameter indicates how strongly our 

longitudinal biomarker (WFLz) is associated with the timing of the event of interest which is 

post-discharge death. The Assoct parameter has a p-value of 0.202 which is insignificant.  

Infants who were admitted with pneumonia were found to be at a higher risk (2.098 times) of 

death compared to their counterparts who were admitted without pneumonia.  

A unit increase in age (in months) reduces the risk of mortality by 0.013 times.  

Infants admitted with diarrhea were 0.624 times less likely to die than their counterparts who 

were admitted without diarrhea. 

From table 3, the Weibull shape parameter was 1.5. This implies it is positively skewed and 

has a right tail in addition to a decreasing hazard of post-discharge mortality with time (as 

noted in the explanatory data analysis). The scale parameter was 1.58.  
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Table 3: Parameter estimates, standard errors and p-values for the WFLz variable. 

Effect Estimate S.E p-value 

Intercept -5.099 0.470 <0.0001 

Treatment -0.085 0.216 0.694 

Pneumonia 0.741 0.272 0.0064 

Diarrhea -0.471 0.224 0.035 

Age -4.383 1.130 0.0001 

Assoct -0.034 0.027 0.2023 

Log (shape) 0.462 0.109 <0.0001 

 

4.5 MUAC results 

The basic survival submodel containing only MUAC as a covariate was fitted. Likelihood 

ratio tests determined that two baseline covariates (site and treatment (p-value>0.05)) were 

not significant. Pneumonia (p-value=0.007), diarrhea (p-value=0.028) and age (p-

value<0.001) were found to be significant. Site was dropped but treatment was retained in the 

model.  

Numerical integration was done using adaptive Gauss-Hermite rule with 30 points. 

Convergence was concluded when the parameter estimates and the AIC values were no longer 

changing. Analysis was conducted assuming a Weibull baseline hazard for the survival 

submodel.  

As shown in Table 4 the ‘Assoct’ parameter that measures the association between ?���� (in 

this case the value of MUAC) and the risk ofdeathshows a significant relationship between 

MUAC and mortality (p-value=0.014). The parameter % quantifies the effect of the underlying 

longitudinal outcome to the risk for an event. A unit increase in MUAC (in centimeters) 

reduces the risk of death by 0.9 times. 
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Patients admitted with pneumonia were at a higher risk of post-discharge mortality (2.1 times) 

as compared to those admitted without pneumonia. Patients admitted with diarrhea were 0.6 

times at a lower risk of post-discharge death as compared to those admitted without diarrhea.  

Table 4: Parameter estimates, standard errors and p-values for the MUAC variable. 

Effect Estimate S.E p-value 

Intercept -4.290 0.530 <0.0001 

Treatment -0.087 0.216 0.6885 

Pneumonia 0.740 0.271 0.0064 

Diarrhea -0.468 0.223 0.0361 

Age -4.395 1.127 0.0001 

Assoct -0.067 0.027 0.0143 

Log (shape) 0.568 0.109 <0.0001 

 

The Weibull shape parameter was 1.76. This implies it is positively skewed and has a right 

tail in addition to a decreasing hazard of post-discharge mortality with time. The scale 

parameter was 1.76.  
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CHAPTER 5: DISCUSSION 

Joint models for longitudinal and time-to-event data have become a valuable tool in the 

analysis of follow-up data. These models are mainly applicable when the focus is on the 

survival outcome and we wish to account for the effect of an endogenous time-dependent 

covariate measured with error and when the focus is on the longitudinal outcome and we wish 

to correct for nonrandom dropout. Due to the capability of joint models to provide valid 

inferences in settings where simpler statistical tools fail to do so, and their wide range of 

applications, the last 25 years have seen many advances in the joint modeling field. 

In this work the joint modelling approach proposed by Rizopoulos is presented. This 

methodology constitutes a useful tool to study the relationship between longitudinal and 

survival data. The joint modeling approach is used to determine if there is an association 

between the longitudinal measurements and the risk of mortality in a cohort of 1652 infants.  

As shown in Tables 3 and  4 the ‘Assoct’ parameter that measures the association between 

?����  and the risk of death shows a significant relationship between MUAC and mortality (p-

value=0.014). In contrast, WFLz was not significantly associated with mortality (p-value= 

0.202). The parameter % quantifies the effect of the underlying longitudinal outcome to the 

risk for an event. A unit increase in MUAC (in centimeters) reduces the risk of death by 0.9 

times. This finding concurs with that done by Mwangome et al (2012) in a retrospective study 

carried out using data from The Gambia that showed MUAC showed better performance than 

WFLz in identifying infants at increased risk of death.  In addition joint modelling approach 

shows similar results with the sensitivity and specificity approach used in the research carried 

out in The Gambia. 

The joint model of WFLz and mortality reported an AIC value of 27080.03 while that of 

MUAC and mortality reported an AIC value of 25025.79. When comparing these two models 



39 
 

to see which would be the better model, the one with the smaller AIC value is preferred. This 

means MUAC identifies infants at risk of mortality better than WFLz. 

The major breakthrough of the joint models relative to the time-dependent Cox model, which 

is widely used to predict survival or failure, is that they allow one to deal with the error 

measurements in the time dependent variables (longitudinal variable in this case). In a Cox 

model with time dependent covariates we assume that the variables are measured without 

error. Given that joint modelling allows better capture of the information of the changing 

values of the longitudinal data over time, it would be expected that joint modelling would out-

perform the Cox model especially in a situation when there is much error variation in the 

longitudinal values.  

The strengths of this study include low drop outs due to a rigorous follow up system and 

hence low data missingness. Since this was a double blind and randomized study, there was 

no bias. The major advantage of joint modelling is that constantly provides better estimates of 

events of interest as compared to other traditional methods such as the Cox proportional 

hazards model, Özgür et al. (2015). Since joint modelling is still a relatively new technique, 

further development of corresponding statistical software is required. However, existing joint 

modelling packages have already demonstrated their potential usefulness and should be 

utilized to apply joint modelling in the analysis of relevant data. 

The major limitation of this study was understanding the complex nature of joint modelling. 

Very little literature was available in some aspects of joint modelling since it is relatively new 

and hence not widely published. Joint modelling involves the simultaneous modelling of the 

two components, namely the time-to-event component and the longitudinal component. The 

major challenges of joint modelling are the mathematical and computational complexity. The 

main computational difficulty in joint modelling is that the integrals involved in likelihood 
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estimation are usually intractable in that they have no analytical solutions. So numerical 

approximations are usually required to evaluate these integrals.  
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CHAPTER 6: CONCLUSIONS AND RECOMENDATIONS 

WFLz is still recommended for use by many organizations including WHO as an 

anthropometric standard of diagnosing malnutrition. The joint modelling results join a 

growing pool of research to show that MUAC would be a better standard to not only diagnose 

malnutrition but to identify infants at increased risk of mortality due to severe acute 

malnutrition. Even though it is recommended that MUAC should not be used as a stand-alone 

criterion of anthropometric diagnosis of acute malnutrition given its strong association with 

age, sex and stunting, and its low sensitivity to detect slim children, it consistently 

outperforms WFLz in its predictions. The mid upper arm circumference is a measure that is 

obtained more easily, quickly and more affordably as compared to WFLz. The mid upper arm 

circumference is currently not recommended for use among infants aged below 6 months 

because of a lack of data on its reliability.  

Since joint modelling shows that WFLz is not strongly associated with post discharge 

mortality while MUAC shows a significant relationship with mortality, MUAC is taken to be 

the better predictor of post discharge mortality.  

Joint modelling has given better predictive capabilities as compared to traditional methods 

and its application in analyzing data collected serially is recommended. It has also given 

consistent results it an anthropometric setting as compared to other approaches like sensitivity 

and specificity. Increased used of joint modelling is recommended when analyzing serial data. 

In both cases involving MUAC and WFLz, children with diarrhea were observed to have a 

lower a lower risk of post-discharge death as compared to their counterparts without diarrhea. 

More research is recommended to better explain this finding. 
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