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ABSTRACT

Background: Malnutrition continues to be a major health burdedeveloping countries. It is
globally the most important risk factor for illneasd death, with hundreds of millions of
young children particularly affected. The mid-upmem circumference (MUAC) and the
standardized weight-for- length Z-score (WFLz) am® anthropometric measures that are
used for the diagnosis of malnutrition. The two haopometric measures have poor

correlation in terms of their predictive capabdti

Design: A joint model was applied to data collected relyeim a randomized, double blind,
placebo-controlled trial to see which of these tamdhropometric measures would be the
better predictor of mortality in infants who werdnaitted to hospital with severe acute
malnutrition and later discharged and followed ww bne year. Typically longitudinal
measures and event time data are modelled joigtiptboducing shared random effects or by

considering conditional distributions together witlarginal distributions.

Participants: The study population comprised of 1781 childreimated to hospital with
evidence of an acute infectious disease and wittereemalnutrition and who had care

initiated and were stabilized.

Results: Joint modelling showed that While WFLz was nagnsiicantly associated with
mortality (p=0.202); MUAC had a high associationttwimortality (p=0.014) and was a

predictor of children at risk of post-discharge tabty.

Conclusion: Using joint modelling approach, MUAC was iderddi as superior predictor of

mortality amongst children treated for complicaB&iM.
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CHAPTER 1: INTRODUCTION

1.0 Introduction

In some clinical studies, patients can be followedr a period of time, allowing for exposure
measures to be serially recorded at multiple timetg. The outcome of interest can be
relapse of a disease, re-hospitalization or deatigngst others. A frequently encountered
example of the latter case can be found in bionmarksearch, where clinical studies are
designed to identify biomarkers with strong prodmmosapabilities for survival time. The
research questions in such studies often requ&rate analysis of recorded outcomes, but in
many occasions interest may lie in studying theo@ation of the biomarker and time-to-
event, Rizopoulos (2012). When the interest ishtanlatter case, then joint modeling of the
longitudinal and time-to-event method is adoptedxargples include, human
immunodeficiency virus (HIV) research in which asearcher could be interested in the
association between CD4 cell counts and the tim&ctuired Immune Deficiency Syndrome
(AIDS), liver cirrhosis studies which investigateetassociation between serum bilirubin and
the time to death, systolic blood pressure and ranemy event, prostate-specific antigen
biomarker and prostate cancer recurrence, and Hebiogspecifically HbAlc, levels and
survival in type 2 diabeteZhang et al (2009), Proust-Lima, and Taylor (200% important
characteristic of medical conditions is their dymamature, that is, the rate of progression is
not only different across patients but also dynafiycchanges in time within the same
patient. This implies that the “true” potentialabiomarker in describing disease progression
and its association with survival may only be réedawhen repeated evaluations of the
marker are considered together in analysis, RizZiggai2012). Joint modeling aims to answer
such research questions involving the associatiarctare between repeated measures and
time to the event of interest. Joint modeling haerban active area of methodological
research in the recent past, with one of the isterbeing dynamic predictions for either the

survival or the longitudinal outcome, Rizopoulo012). The quality of this prediction



typically depends on the capability of the longihad marker itself in predicting future
events, that is, the biological mechanism that rierker attempts to describe, and how

strongly this mechanism is related to the evemtefest.

As suggested by Black et al (2003) and Bryce €2@05), malnutrition is a major problem in
itself and also the most important risk factor @ildhood death in developing countries.
Severe acute malnutrition (SAM) is defined by therly Health Organization (WHO) and
the United Nation’s Children Education Fund (UNIQHFy a weight-for-length index of less
than -3 z-score or a mid-upper arm circumferenc&l @) less than 115 mm, World Health
Organization (1999). Severe acute malnutrition bates to one million childhood deaths
annually and complicated SAM is associated withhhigpatient mortality rates, Brewster
(2011). Inadequate attention to post-dischargeesdas adverse implications because the
available evidence suggests that in developing tt@snpost-discharge deaths may be of
similar (or higher) magnitude than inpatient deatAsrecent study conducted to explore
excess pediatric mortality after discharge fromifKiCounty Hospital found that child
mortality was more than seven-fold higher amongt-dasharge children than among
similarly-aged children in the community and tha®% of children who were discharged

from hospital died within the subsequent year, Meisal (2011).

Mid-upper-arm-circumference (MUAC) and the standaed weight-for-length Z-score
(WFLz) are two anthropometric markers used in teseasment of nutritional status. For
infants between 0 and 60 months, the World Heattfa@ization (WHO) recommends the use
of WFLz to define wasting, since it is independent of shgnin its description for wasting
while MUAC is increasingly being recommended tadfieperations as the indicator of choice
for screening and admission to community-based gemant of acute malnutrition (CMAM)
programs Guevarra et al (2012).. The commonly tisexsholds for global acute malnutrition

(GAM) are WFlz< -2 or MUAC < 125 mm.



These two indicators (WFLz and MUAC) correlate ppaxith only about 40 % of SAM
cases identified by one indicator also diagnosedsash by the other World Health
Organization (2009). For example, among severelynowgished children hospitalized in
rural Kenya, 65.1 % of the WEL-3 cases also had a MUAC < 115 mm, whereas 56 tteof
MUAC < 115 cases were also identified by WH3. In that study, 42.9 % of the SAM cases
were identified by both indicators, Berkley et 2005). Fernandez et al.(2010) reported that
among 34,937 children between 6 and 59 months 88mutritional surveys, 75 % of the

children with a WFLz <-3 did not have a MUAC < 1ri¥n.

This study explored the post-discharge survival cbfldren enrolled in a randomized
controlled trial, Berkley et al. (2016), who werdnatted to hospital with severe acute
malnutrition, looking at their serial anthropometmeasures and how these associate with

mortality as a means of identifying infants at eased risk of post-discharge mortality.

1.1 Problem Statement

Malnutrition is a significant problem in developimguntries and a strong risk factor for
admission to hospital and death, Bryce et al. (200%e two most commonly used

anthropometric markers in the assessment of mioat{MUAC and WFLz) have very poor

correlation in terms of predicting which infante at risk of post discharge mortality due to
malnutrition. This research aims to apply joint rallidg to determine which of these two
biomarkers is the more accurate and better predaftchildren at risk of mortality due to

malnutrition.

1.2 Justification
The two anthropometric markers that were being idensd have poor correlation in terms of
their predictive capabilities. This research aim@apply joint modelling to determine which

of the two anthropometric biomarkers is the bgtredictor of mortality. If a better predictor
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is found, it can be translated as the standardimodlagnosis of malnutrition and result in the

reduction of mortality in infants with malnutrition

1.3 Null Hypotheses

No difference in the predictive capability of tlhveotanthropometric markers of malnutrition.

1.4 Objective of the study
The objective of this study was to create a joirddei of serial anthropometric measures
(MUAC and WFLz) and mortality. This model could pdsy tell us which of the two

anthropometric markers the better predictor of alytin infants.

1.5 Specific Objectives
I. To determine the association between the anthropmnmedicators (MUAC and WFLz)
with mortality in children with severe acute malmudn.
Il.  Toinvestigate the predictive capabilities of MUAGd WFLz on mortality.
lll.  To determine which of the two anthropometric intihea (MUAC and WFLz) is the

better predictor of mortality in children with segeacute malnutrition.



CHAPTER 2: LITEARTURE REVIEW

2.0 Anthropometry and malnutrition

For infants aged between 0 and 60 months, WorldthHé&xrganization (WHO) recommends
the use of WFE to define wasting, World Health Organization (1299 WFLz lower than

-3 standard deviations of the international refeegpopulation can be used as an indicator of
SAM, World Health Organization (2009). Mid-uppermarcircumference has also been
endorsed by the WHO, the World Food Programme (WHER) United Nations System
Standing Committee on Nutrition (SCN) and the WhiMdations Children’s Fund (UNICEF)
as a suitable tool for diagnosing severe acute uirdion (wasting) and as criteria for
admission into therapeutic feeding programs, Wailelalth Organization (1999). Many
agencies are beginning to move towards using MUAQG dasis for admitting children to
both therapeutic and supplementary feeding progravhatt et al. (2008). A study by
Mwangome et al (2012) showed that MUAC was a met@able marker in determining
children aged between 6-14 weeks who are at ele@vatk of death as compared to WFLz.
These two anthropometric measurements are cribods in predicting death and can be used

as timely indicators to allow for early interventio

2.1 Post-dischar ge mortality

A recent study conducted in Bangladesh reported mgrtality within 3 months of discharge
of Bangladeshi children following hospitalizationthivsevere malnutrition and pneumonia.
The reported post-discharge mortality of 8.7% waslar to the inpatient mortality. Most of

the post-discharge deaths occurred within 1 mortlowing discharge Chisti et al.

(2014).Another study that included 393 HIV-unintgtt Malawian children with severe
malnutrition, reported 44 (11%) deaths within 3 mmsn Kerac et al. (2009). A study
conducted to explore excess pediatric mortalitgradischarge from Kilifi County Hospital

found that child mortality was more than seven-fblgher among post-discharge children



than among similarly-aged children in the communibtd that 4.5% of children who were
discharged from hospital died within the subseqyeat, Moisi J., Gatakaa H.. and Berkley J.

(2011).

2.2 Joint modelling

Joint modelling is used to estimate the associdbetween survival times and endogenous
time-dependent covariates. The longitudinal outciffomarkers or other serial measures)
are referred to as endogenous time-dependent etesiin a survival modelling framework.
Important features of endogenous time-dependerdri@ies are: (1) they require survival of
the patient for them to exist, (2) they are measwith error and (3) their complete path up to
any timet is not fully observed, that is, the marker of tlagignt is only known at days when
the patients provide the measurements, Rizopo@0%2). When primary interest is in the
association between such endogenous time-depewrdegatiates and survival, a modeling
framework has been introduced, known as the jomdeting framework for longitudinal and

time-to-event data, Faucett and Thomas (1996) amti$ and Davidian (2004).

The idea behind joint models is to combine two suwdels, a survival model and a suitable
model for the repeated measurements that will adcéar its special features. The sub-
models are specified below, specifically with refgarto the approach of Prof Dimitris

Rizopoulos as shown in Rizopoulos (2012).

To assist in introducing this modeling frameworting notations will be used. The true event
time for theit" subject will be denoted bF, T; will denote the observed event time, defined
as the minimum of the potential censoring tiGi@ndT;", and byd; = I(T]" < C;) the event
indicator. For the endogenous time-dependent cates;i lety; (t) denote its observed value
at time pointt for thei*" subject. It should be noted that(t) is not observed for any tinme

but rather only at the very specific occasiopsat which measurements were taken. Thus, the

observed longitudinal data consist of the measunéswe: = {y;(¢;;),j = 1, ..., n;}.



2.3 Survival sub model

A new termm;(t) that denotes the true and unobserved value dbtigtudinal outcome at
time t is introduced. Note thatn;(t) is different fromy;(t), with the latter having

measurement error value of the longitudinal outcaimet. To quantify the strength of the
association betweem;(t) and the risk for an event, a straight forward apph is to

postulate a relative risk model of the form:
A (E|M; (1), w;) = A(D)explyTw; + am;(t)}t > 0 (2.3.1)

Where m;(t) = {m;(s),0 < s < t} is the history of the true but unobserved longitat
process up to time pointd,(.) is the baseline risk function and is the parameter
representing the longitudinal effect on hazard.ilamy, w; is a vector of baseline covariates
associated with parameter vecgorThe risk for an event at timetherefore depends on the
baseline hazard, baseline covariates and the e \of the longitudinal covariate at that
time. The risk ratio associated with unit changelsaseline covariates is given by expénd
the relative change in the risk for a unit changéhe true value of the longitudinal covariate

is expg), Rizopoulos (2011).

2.4 Longitudinal sub-model

In the above definition of the survival model, tinee unobserved value of the longitudinal
covariatem;(t) was used. Taking into account that the longitudinéormation y;(t) is
collected with possible measurement errors, tts $irep towards measuring the effect of the
longitudinal covariate to the risk for an eventdsestimaten;(t), in order to reconstruct the
complete true historyn;(t) for each subject. Then, the linear mixed model lmamewritten

as,

yi(t) = m(t) +u;(t) + €,(0),
m; = x{ B +z] b,
b; ~ N(0,D)
\& ~ N(0,0%L,)

(2.4.1)



This mixed model formulation allows one to statatttihe longitudinal outcomg, (t)is equal

to the true levein;(t) plus an error term. An incorporated stochastimtey(t) can be added.
This term is used to capture the remaining seoaletation in the observed measurements,
which random effects are unable to capture. Consigléhatu;(t) is considered as a mean-
zero stochastic process, independeritahde;.

The equation is a linear mixed model which accodotsmeasurement error problems by
postulating that the observed level of longitudinatcomey;(t) comprises of true value
m;(t) and a random error terea(t). If observations are taken on a regular basiss it
improper to disregard autocorrelation. Howeveis iifficult to implement a model with both
random-effects and autocorrelation term, Tsiatid Bavidian (2004), therefore a random-
effects model was preferred due to its computatieaae in implementation. By fitting the
linear mixed submodel, the true biomarker valueesimated and the complete patient’s
longitudinal historym;(t) is reconstructed.

Statistical models are often built to provide potidns. When good quality predictions are of
interest, it would be useful to combine all avaiainformation available for a patient in order
to account for the biological interrelationshipstvbeen the outcomes. The importance of
combining serial sets of markers for prediction veaspirically illustrated by Fieuws et al
(2008), who noted that predictions of graft failimea kidney transplant study based on a joint
model using all recorded biomarkers of kidney fioruhg provided better predictions (in
terms of early detection of patients at risk ofalegraft failure), than those provided by

separate analysis per marker.



CHAPTER 3: MATERIALSAND METHODS

3.0 Study sites
The trial was carried out at four sites, Coast FPrmal General Hospital, Kilifi County

Hospital, Malindi Sub-County Hospital and Mbagdistrict Hospital.

3.1 Study design

The data used for this study came from a multieerdouble-blind, randomized, placebo-
controlled trial. In such a trial of a medical tme@nt, some (roughly half) of the participants
are given the treatment, in this case Co-trimox@Z@ITX), others are given fake treatment
(placebo), and neither the researchers nor théciparts know in which arm of the study

they were until the study ends (they are thus Hathd”).

3.2 Demographic details

Kilifi County Hospital serves a rural populationettmajority of who are farmers. Malindi
Sub-County Hospital is within Kilifi County approrately 60km North of Kilifi town. It
mainly serves a rural population that lives in eisarid area to the West and North to the
border with Lamu District and also Malindi Town.x8 eight percent of Kilifi District
residents and 76% of Malindi District residents evesstimated to live below the national
poverty line in 2006.Coast Provincial General Htapis the largest provincial hospital in
Kenya and predominantly serves residents of MombBasen plus referrals from the entire
coast region. Thirty eight percent of Mombasa istesidents were estimated to live below
the national poverty line in 2006. Mbagathi Didtridospital is located near the Kibera
informal settlement in Nairobi and serves populaibtving in informal settlements across the
entire Nairobi region. In 2006, 38% of Nairobi Dist residents were estimated to live below

the national poverty line.
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3.3 Study population
The study population comprised of children admittechospital with evidence of an acute

infectious disease and with severe malnutritionwahd had care initiated and were stabilized.

3.4 Inclusion Criteria:

Patients who were considered for the trial wereldggween 2 months and 5 years. They had
to have been diagnosed with severe malnutritiowefge malnutrition defined as: age 6
months to 5 years: MUAC <11.5cm; age 2 to 6 montgAC <11cm) or kwashiorkor at
any age (defined in current WHO guidelines (Workelakih Organization (2005)). A negative
HIV rapid test or if under 18 months, HIV-1 PCR a#&ge and no longer breastfeeding for at
least 6 weeks. Potential participants should haenlwilling to remain within study area and

come for all protocol specified visits.

3.5 Apparatus and/or I nstruments

All children admitted to the study were weighedngsian electronic scale (Seca 825,
Birmingham UK) to 0.01 kg. Length was measured .tb @n using an infantometer (Seca
416, Birmingham UK) or stadiometer (Seca 215, Bmgham UK). Mid upper arm
circumference was measured to 0.1m cm using a atdnadsertion tape (TALC, St. Albans,
UK). Kwashiorkor was diagnosed on the basis oftéik pitting pedal oedema, World Health
Organization (2005).

3.6 Data

The data was collected by KEMRI-Wellcome Trust,ifkiand entered into OpenClinica,
Ngari et al (2014). The aim of the trial for whithis data was collected was to find out
whether daily cotrimoxazole prophylaxis could reelugnortality among severely
malnourished children who are not infected with HBérkley et al. (2016). The data was
collected at two rural and to urban hospitals betwBovember 2009 and March 2014. One
thousand seven hundred and eighty one patients reenaited into the study. Follow-up was

done on a monthly basis for six months after disphdrom hospital and thereafter every
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other month up to one year. However, for this gtilde data was limited to the subset of the
first six-month period when children were on dadgophylaxis. In addition to the serial
anthropometric measurements (WFLz and MUAC), theeliae covariates that were recorded

were age, gender, pneumonia, diarrhea and oedema.

3.7 Estimation in joint modelling
Self and Pawitan proposed a joint model with atirgdarisk submodel of the form

hi(t|Mi(t),wy) = }%Lno Pr{t < T/ <t +dt|T; = t, M;(t), w;}/dt

= ho(t)explyTw; + am;(t)}t > 0 (3.7.1)
with an unspecified baseline risk functibg(t), and with the term exfirm;(t)} replaced by
{1+ am;(t)}, such that the model would be linear in the randeffectsb;. The authors
proposed to estimate this joint model using a ttep-snferential approach, in which at step
one the random effects are estimated using a $epstres approach, and at step two these
estimates are used to impute appropriate valuég;@f) that are substituted in the classical
partial likelihood of the Cox model, Ye et al. (8)(Even though these approaches are
relatively easy to implement with standard softwanemany instances they produce biased
results. This has been shown with a series of siams studies, Henderson, Diggle, and
Dobson (2000). For this reason and instead ofnglgn approximations, the literature for
this type of joint models has primarily focused fotl likelihood approaches that eliminate
this bias.
The main estimation method that has been propasegbiht models is (semi parametric)
maximum likelihood, Hsieh et al (2006). Moreoversidiis and Davidian proposed a
conditional score approach in which the randomctdfere treated as nuisance parameters,
and they developed a set of unbiased estimatingtiemqs that yields consistent and
asymptotically normal estimators, Lipsitz, S., Fturice, G., Ibrahim, J., Gelber, R., and

Lipshultz, S. (2002)



12

The maximum likelihood estimates are derived asntloeles of the log-likelihood function
corresponding to the joint distribution of the abvesl outcomes. To define this joint
distribution we will assume that the vector of timdependent random effecks underlies
both the longitudinal and survival processes. Tigmns that these random effects account for
both the association between the longitudinal amenie outcomes, and the correlation
between the repeated measurements in the longilupgincess (conditional independence).

Formally, we have that

p(T;, 83, yilbi; 8) = p(Ty, 8ilb;; 6) p(yilb;; 6) and

p(yilb;; 8) = [1; p{yi(tyl bi; 6} (3.7.2)

Where6 = (6¢,6y,0;)" denotes the full parameter vector, withdenoting the parameters
for the event time outcomé, the parameters for the longitudinal outcomes @yttie unique
parameters of the random-effects covariance mangy; is then; x 1 vector of longitudinal
responses of th&" subject. In addition, it is assumed that given ¢hserved history, the
censoring mechanism and the visiting process atependent of the true event times and
future longitudinal measurements. As defined eartiee visiting process is the mechanism
(stochastic or deterministic) that generates thmetipoints at which longitudinal
measurements are collected, Lipsitz et al (2002]),far any time point, define as observed
history all available information for the longitundil process prior td Practically speaking,
these assumptions imply the belief that decisiomsvbether a subject withdraws from the
study or appears at the clinic for a longitudinaasurement depend on the observed past
history (longitudinal measurements and baselineagates), but there is no additional
dependence on underlying, latent subject charatiteriassociated with prognosis.

Under these assumptions the log-likelihood contidisufor thei™ subject can be formulated

as follows
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logp(T;, 65,y 0) = IOgJP(Ti: i, yi, bi; 0)db;

= logp(T, 6ilbi; 6, ) [Hj p{yi(t)| bs; QY}]P(bi; 8)db; (3.7.3)

with the conditional density for the survival parg p(T;, 8i|b;; 8, B) taking the form

p(T;, 8ilbs; 0, B) = hi(TilMi(T)8;, B)Si(Ti|Mi(T)6;, B)
= [ho(Texp (¥ w; + amy(THN® x exp (— [ ho(s)exp {yTw; + am;(s)}ds)
(3.7.4)

wherehy(-) can be any positive function of time, such aspieeewise-constant model below

Q
ho(£) = z 2, 1(vg_1 <t < 1) (3.7.5)
q=1

where0 = v, < v; < v, <<y, denotes a split of the time scale, withbeing larger than
the largest observed time, amgdenotes the value of the hazard in the intefwal,, v,].

ho(-) can also be a positive function of the B-splinedel below

ho(£) = Ky + Z kaBy (t,q) (3.7.6)
d=1

wherex® = kg, k; .. K, are the spline coefficientg,denotes the degree of the B-splines basis
functionsB(+), and, withm = m + q — 1 with 12 denoting the number of interior knots.
ho(-) can also be the hazard function of any knowrridigtion, and the survival function is

given by the equation below

Si(t[M;(e), wy) = Pr(T;" > t|M;(t), wy)

=exp (— ftho(s)exp yTw; + am;(s)}ds) (3.7.7)
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The joint density for the longitudinal responsegetiher with the random effects is given by

the equation below

p(yilb;; O)p(bs; 0) = 1_[ p{yi(ti;)| bi; 6,3p(bs; Op) (3.7.8)
j

q 1
= (2mo?) M %exp {~|ly; — X;B — Z;b;||*/20°} X (Zn)_deet(D)_iexp (—=b{D™'b;/2)
Where g, denotes the dimensionality of the random-effeastar, and | | {X;x?}

denotes the Euclidean vector norm.

3.8 Data analysis

The data was analyzed using the R, R Core Teamb5j2Qtersion 3.2.3) statistical

environment, with the joint modelling done using Jdckage, Rizopoulos (2010). R was
chosen due to its simple, powerful and dynamic neatin addition, the joint model that was
fit used the same approach to that used by DimRimopoulos, who has implemented a

number of joint modelling packages in R, Rizopoy@310) and Rizopoulos (2011).

3.9 Joint modeling methodology

For the time after discharge from hospital and éach of the longitudinal measures

separately, a joint model was fitted. The basic ehddssuming risk is dependent on the
current value of the measure) was built in two esadgn stage one, the linear predictor of the
survival sub-model only contained the effect of theasure. The sub-model was fitted with
Weibull baseline hazard model. The fixed effectacttire of the longitudinal sub-model only

included the time evolution while the random stowethad random slope and intercept. In
stage two, the baseline covariates were addedypadin both the longitudinal and survival

sub-models. The likelihood ratio test was usede#t if the covariate was important or not at
the 5% significance level. The longitudinal andvstal sub-models were combined to create
the final the joint model. The joint models wererhcompared to see which would give a
better prediction of the event of interest. Thisswachieved by comparing them using

Akaike’s information criterion (AIC), Akaike (1974g¢alculated as:
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AIC = - 2 x loglikelihoodt 2k

Wherek is the number of parameters in the fitted models TEriterion finds balance between
accuracy and complexity of the fitted model. Thedelowith the smallest AIC is considered

as the better predictor and is the preferred model.

To improve the numerical stability of the modelbe tcovariates were rescaled to unit

magnitude by dividing each measure by the maximalev/for that measure.

For the WFLz, the basic longitudinal submodel @nenixed effects model) was written as

follows

WFLZl(t) = Ml(t) + Ei(t)

= ﬁO + lgl(t) + biO + bilt + Si(t) (391)

In the fixed-effects part we include the main efffettime and in the random-effects design
matrix we include an intercept and a time termoit model of the following form was then

fit.

h;(t) = hy(t)exp {yX; + aM;(t)} (3.9.2)

WhereR; represents the baseline covariates. The abovéi@guwan thus be expanded to be

of the form

hi(t) = ho(t)exp {y1Pneumonia + y,Diarrhea + yzAge + y,Treatment + aM;(t)}

(3.9.3)
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CHAPTER 4: RESULTS

4.1 Exploratory data analysis

One thousand seven hundred and eighty one childeza enrolled in the four sites. Coast
general hospital in Mombasa County enrolled 84%doén. Kilifi county hospital enrolled
151 children. Malindi sub county hospital enroll2dl children and Mbagathi hospital in
Nairobi enrolled 507 children. All children at athe four sites were enrolled between
20/11/2009 and 28/03/2014. Three children wereusberd as ineligible leaving one thousand

seven hundred and seventy eight children were dgeclun the analysis.

Eight hundred and eighty seven children were assigin cotrimoxazole prophylaxis and
eight hundred and ninety one assigned to placebth Bngitudinal biomarkers had missing
values. In addition, 126 patients had enrollmentasneements but no post-discharge
measurements. These patients were excluded fromnilgses. The final analyses were thus

done on 1652 patients.

The mean age at enrollment was 12.75 (SD=8.91,erén§5) and the mean WFLz and
MUAC at enrollment were -3.34 and 10.56 respecyiviine hundred and six (50.8 %) of the
study participants were male. Three hundred (16.8&d oedematous malnutrition and 1024
(57.5 %) were enrolled with diarrhea. Table 2(ajveh some selected baseline characteristics

of children enrolled in the trial based on theaeainthropometric measures.
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MUAC

Month O [Month1l |Month2 |Month3 |Month4 [Month5 [Month 6

Diarrhea

No 10.57 11.30 11.76 12.09 12.40 12.55 12.74

Yes 10.55 11.35 11.91 12.20 12.46 12.64 12.86

Pneumonia

No 10.71 11.58 12.16 12.44 12.69 12.88 13.04

Yes 10.43 11.11 11.57 11.89 12.21 12.35 12.59

Sex

Female |[10.57 11.32 11.80 12.09 12.35 12.50 12.72

Male 10.54 11.34 11.89 12.21 12.51 12.70 12.88

WFLz

Diarrhea

No -3.14 -2.40 -2.11 -1.84 -1.76 -1.72 -1.62
Yes -3.38 -2.49 -1.96 -1.82 -1.65 -1.60 -1.47
Pneumonia

No -3.41 -2.29 -1.80 -1.62 -1.49 -1.41 -1.33
Yes -3.21 -2.59 -2.22 -2.05 -1.88 -1.87 -1.73
Sex
Female |-3.09 -2.30 -1.90 -1.73 -1.63 -1.55 -1.44
Male -3.48 -2.50 -2.14 -1.95 -1.76 -1.74 -1.63

Table 2(a): selected baseline characteristics of study pgénts based on MUAC and

WFLz

The primary event of interest of this study wastkde@he distribution of the number of deaths
(210 in total) over the six month study period wwadollows: 123 in the first month, 32 in the

second month, 21 in the third month, 19 in the fownonth, 9 in the fifth month and 6 in the



sixth month. This indicates a decreasing risk diwae. An overall increase was observed in
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the values of the two anthropometric indicatorssTé shown in table 2(b).

Month 0 1 2 3 4 5 6
MUAC 10.56 11.33 11.85 12.15 12.44 12.61 12.81
WFLz 3.28 2.45 2.02 1.85 1.70 1.65 1.54
Deaths - 123 32 21 19 9 6

Table 2(b): the average monthly anthropometric values anttithstion of deaths.

To investigate survival probabilities by the ditfat baseline covariates, Kaplan-Meier curves

were plotted. Figure 1 shows a Kaplan-Meier sulvestimate, with the 95% confidence

interval, for the time to death of all study papants.

Survival

=1
45
n

Fa -

Time

Figure 1: Kaplan-Meier survival estimate for time to death
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Comparison of different pairs of survival curvesswdone using the log rank test. It tests the
null hypothesis that there is no difference betw#en population survival curves (i.e. the

probability of an event occurring at any time pagthe same for each population).

From figure 1a it seemed that male and female @mnlthad a very small difference in survival
probabilities. The log-rank test showed no sigaific difference existed between the two

groups (p-value= 0.579).

0.950- 36X

Femasl=

Survival
- ]

— Make

=

Time
Figure 1la: KM by gender

Figure 1b shows the survival curves of patientdwiiarrhea and without diarrhea. Patients
with diarrhea at admission had a better survivabpbility than those without. The log-rank

test showed this difference to be significant (hsga 0.014)
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Figure 1b: KM by diarrhea

Figure 2a suggests that there was no significdiférdnce between patients placed on the
different treatments. This implies that no sigrafit difference existed in the survival of the

patients on CTX ant those on placebo. This wasicoatl by the log-rank test (p-value=

0.968).
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— treatment
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Survival

— Placebo

2 4 :
Time

Figure2a: KM by treatment

Figure 2b suggests a significant difference in theavival probability between study
participant admitted with pneumonia and those aeahitvithout pneumonia. The log-rank
test indicates a highly significant difference tmetsurvival probabilities of patients with
pneumonia and those without pneumonia (p-valué®g1). Patients without pneumonia had a

higher survival probability than those with pneunaon



22

pREUmo

Mo

Survival

— Yes

055- | _I_‘l

4

[

Time

Figure 2b: KM by pneumonia

Figure 3a shows a significant difference (log-réedt p-value = 0.026) in survival probability

among the different sites. Patients enrolled infikgbunty hospital seemed to have a better

survival probability than their counterparts in titber sites.
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Figure3a: KM by site

Figure 3b suggests that patients admitted with medeould have a higher post-discharge
survival probability than those admitted withoudema. Out of the total of 1781 patients,
only 300 were admitted with oedema. Even thouglept with oedema seem to have a

higher survival probability, it is not statisticakignificant (log-rank test p-value = 0.071)
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Figure 3b: KM byoedema

4.2 Weight for length z-score (WFL 2)

4.2.1 Mean structure

Exploration of the mean structure was done usingrage profile plots. An overall as

well as a different average profile for each of tierent levels of the baseline covariates
were plotted. From the average profile plot showlow in figure 4, an increasing trend was
observed. A sharp increase is seen during theé tiive months after the patient was

discharged from hospital.
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Figure 4: WFLz mean structure

On average, female patients had a higher WFLz iteele patients as shown in figure 4a.
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months post discharge

Figure 4a: WFLz by gender

Figure 4b suggests an insignificant differenceha mean WFLz between patients admitted
with diarrhea and those without diarrhea. Figurendiccates that during the first month (post-
discharge), the WFLz between patients with pneumand those without was insignificant.
But as from the second month, the difference batwbe WFLz of the two groups starts
increasing. A somewhat constant and significarfeckhce is observed until the end of the

study (month six).
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Figure 4b: WFLz by diarrhea
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Figure 4c: WFLz by pneumonia

Figure 4d shows the trends observed in the mean AMfLthe patients subjected to the

different treatments (CTX and Placebo)
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Figure 4d: WFLz by treatment

4.2.2 Variance Structure
The average evolution of the variance of WFLz daration of time is shown in Figure 5.
There is a sharp increase during the first monter afischarge. After the first month the

evolution of the variance of WFLz is fairly constan
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Figure5: WFLz Variance structure

4.3 Mid upper arm circumference (MUAC)

4.3.1 Mean structure

From the overall average profile plot in figurea6general linear trend was observed.
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Figure 6: MUAC Variable: Mean structure

Figure 6a suggests that there was no significdfgrdnce between the average MUAC values

in the patients admitted with diarrhea and thogbaut diarrhea.
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Figure 6a: MUAC by diarrhea

Figure 6b indicates that patients admitted withyonenia had, on average, a lower MUAC as
compared to their counterparts who were admittethout pneumonia. There was no
difference in the average MUAC values of patientsjected to the different treatments. This

is illustrated in figure 6¢
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Figure 6b: MUAC by pneumonia
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Figure 6¢c: MUAC by treatment

During the first month after discharge from hodpitiaere was no significant difference in the

average MUAC values of males and females. Thikasva on figure 6d.
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Figure 6d: MUAC by gender
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4.3.2 Variance structure

The average evolution of variance as function wietis shown in Figure 3(b). The general

evolution of the variance function is not constant.

muac
14 15 1.8 1.7 18

1.3

1.2

months post recruitmen

Figure 3(b): MUAC Variable: Variance structure

4.4 WFLzresults

To start with, the basic survival submodel contagnonly WFLz as a covariate as described
above was fitted. A likelihood ratio test was oadriout at 5% level of significance to

determine if any of the baseline covariates wegaicant. Treatment and site were found to
be insignificant (p-value>0.05) while pneumoniavgiue=0.007), diarrhea (p-value=0.028)
and age in months (p-value<0.001) were found tosigmificant. Site was dropped but

treatment was retained in the model.
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Initially the numerical integration was done usadpptive Gauss-Hermite rule with 15 points
and then the points were gradually increased. Ggewee was concluded when the
parameter estimates and the AIC values were ncefoalganging. Analysis was conducted

assuming a Weibull baseline hazard for the sungudimodel.

The results of the model are presented in tabléh8.parametest in equation 1 is reported as
the ‘Assoct’ in the results of the joint model. $hparameter indicates how strongly our
longitudinal biomarker (WFLz) is associated witle timing of the event of interest which is

post-discharge death. The Assoct parameter hasbup-of 0.202 which is insignificant.

Infants who were admitted with pneumonia were fotmte at a higher risk (2.098 times) of

death compared to their counterparts who were aelhntithout pneumonia.

A unit increase in age (in months) reduces theafgkortality by 0.013 times.

Infants admitted with diarrhea were 0.624 times ldsly to die than their counterparts who

were admitted without diarrhea.

From table 3, the Weibull shape parameter wasThi implies it is positively skewed and
has a right tail in addition to a decreasing hazsrgost-discharge mortality with time (as

noted in the explanatory data analysis). The qualameter was 1.58.
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Table 3: Parameter estimates, standard errors and p-vafaethe WFLz variable.

Effect Estimate S.E p-value
Intercept -5.099 0.470 <0.0001
Treatment -0.085 0.216 0.694
Pneumonia 0.741 0.272 0.0064
Diarrhea -0.471 0.224 0.035
Age -4.383 1.130 0.0001
Assoct -0.034 0.027 0.2023
Log (shape) 0.462 0.109 <0.0001

4.5 MUAC results

The basic survival submodel containing only MUAC aasovariate was fitted. Likelihood
ratio tests determined that two baseline covarifdde and treatment (p-value>0.05)) were
not significant. Pneumonia (p-value=0.007), diaarhg¢p-value=0.028) and age (p-
value<0.001) were found to be significant. Site wespped but treatment was retained in the

model.

Numerical integration was done using adaptive Gélessnite rule with 30 points.
Convergence was concluded when the parameter éstimad the AIC values were no longer
changing. Analysis was conducted assuming a Weiba$leline hazard for the survival

submodel.

As shown in Table 4 the ‘Assoct’ parameter that sneas the association betwead(t) (in

this case the value of MUAC) and the risk ofdeathish a significant relationship between
MUAC and mortality (p-value=0.014). The parameteyuantifies the effect of the underlying
longitudinal outcome to the risk for an event. Aituncrease in MUAC (in centimeters)

reduces the risk of death by 0.9 times.
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Patients admitted with pneumonia were at a higiskraf post-discharge mortality (2.1 times)
as compared to those admitted without pneumoniterRa admitted with diarrhea were 0.6

times at a lower risk of post-discharge death aspaoed to those admitted without diarrhea.

Table 4: Parameter estimates, standard errors and p-vafaeghe MUAC variable.

Effect Estimate S.E p-value

Intercept  -4.290 0.530 <0.0001
Treatment -0.087 0.216 0.6885
Pneumonia 0.740 0.271 0.0064
Diarrhea  -0.468 0.223 0.0361
Age -4.395 1.127 0.0001
Assoct -0.067 0.027 0.0143

Log (shape) 0.568 0.109 <0.0001

The Weibull shape parameter was 1.76. This impties positively skewed and has a right
tail in addition to a decreasing hazard of postitksge mortality with time. The scale

parameter was 1.76.
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CHAPTER 5: DISCUSSION

Joint models for longitudinal and time-to-eventad&iave become a valuable tool in the
analysis of follow-up data. These models are maapplicable when the focus is on the
survival outcome and we wish to account for theeaffof an endogenous time-dependent
covariate measured with error and when the focos ithe longitudinal outcome and we wish
to correct for nonrandom dropout. Due to the cdjgbof joint models to provide valid

inferences in settings where simpler statisticalgdail to do so, and their wide range of

applications, the last 25 years have seen manynadsan the joint modeling field.

In this work the joint modelling approach proposkey Rizopoulos is presented. This
methodology constitutes a useful tool to study tektionship between longitudinal and
survival data. The joint modeling approach is usedletermine if there is an association

between the longitudinal measurements and theofighortality in a cohort of 1652 infants.

As shown in Tables 3 and 4 the ‘Assoct’ param#tat measures the association between
M;(t) and the risk of death shows a significant retetiop between MUAC and mortality (p-
value=0.014). In contrast, WFLz was not signifitardgssociated with mortality (p-value=
0.202). The parameter quantifies the effect of the underlying longitudimautcome to the
risk for an event. A unit increase in MUAC (in cemeters) reduces the risk of death by 0.9
times. This finding concurs with that done by Mwant et al (2012) in a retrospective study
carried out using data from The Gambia that shoMEAC showed better performance than
WFLz in identifying infants at increased risk ofadle. In addition joint modelling approach
shows similar results with the sensitivity and sfieity approach used in the research carried

out in The Gambia.

The joint model of WFLz and mortality reported amCAvalue of 27080.03 while that of

MUAC and mortality reported an AIC value of 2502%.¥When comparing these two models
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to see which would be the better model, the onb thié smaller AIC value is preferred. This

means MUAC identifies infants at risk of mortaliigtter than WFLz.

The major breakthrough of the joint models relatwehe time-dependent Cox model, which
is widely used to predict survival or failure, isat they allow one to deal with the error
measurements in the time dependent variables (latigal variable in this case). In a Cox
model with time dependent covariates we assumethigavariables are measured without
error. Given that joint modelling allows better tape of the information of the changing
values of the longitudinal data over time, it woblkl expected that joint modelling would out-
perform the Cox model especially in a situation whieere is much error variation in the

longitudinal values.

The strengths of this study include low drop outi® do a rigorous follow up system and
hence low data missingness. Since this was a ddulibieé and randomized study, there was
no bias. The major advantage of joint modellinthest constantly provides better estimates of
events of interest as compared to other traditionathods such as the Cox proportional
hazards model, Ozgir et al. (2015). Since joint elidy is still a relatively new technique,

further development of corresponding statisticdlveare is required. However, existing joint

modelling packages have already demonstrated taential usefulness and should be

utilized to apply joint modelling in the analysikrelevant data.

The major limitation of this study was understagdihe complex nature of joint modelling.
Very little literature was available in some aspeditjoint modelling since it is relatively new
and hence not widely published. Joint modellingoimes the simultaneous modelling of the
two components, namely the time-to-event compoaedtthe longitudinal component. The
major challenges of joint modelling are the mathigrtahand computational complexity. The

main computational difficulty in joint modelling ihat the integrals involved in likelihood
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estimation are usually intractable in that they enaw analytical solutions. So numerical

approximations are usually required to evaluatsehetegrals.
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CHAPTER 6: CONCLUSIONS AND RECOMENDATIONS

WFLz is still recommended for use by many orgamirest including WHO as an
anthropometric standard of diagnosing malnutritidime joint modelling results join a
growing pool of research to show that MUAC wouldabketter standard to not only diagnose
malnutrition but to identify infants at increaseiskr of mortality due to severe acute
malnutrition. Even though it is recommended thatAGJshould not be used as a stand-alone
criterion of anthropometric diagnosis of acute ra#ition given its strong association with
age, sex and stunting, and its low sensitivity tetedt slim children, it consistently
outperforms WFLz in its predictions. The mid uppem circumference is a measure that is
obtained more easily, quickly and more affordaldycampared to WFLz. The mid upper arm
circumference is currently not recommended for aseng infants aged below 6 months

because of a lack of data on its reliability.

Since joint modelling shows that WFLz is not strign@ssociated with post discharge
mortality while MUAC shows a significant relationphwith mortality, MUAC is taken to be

the better predictor of post discharge mortality.

Joint modelling has given better predictive capadd as compared to traditional methods
and its application in analyzing data collectedadlgris recommended. It has also given
consistent results it an anthropometric settingamspared to other approaches like sensitivity

and specificity. Increased used of joint modelimgecommended when analyzing serial data.

In both cases involving MUAC and WFLz, children hvidiarrhea were observed to have a
lower a lower risk of post-discharge death as cospto their counterparts without diarrhea.

More research is recommended to better explairfitidgng.
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