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ABSTRACT 

Antibodies are critical molecules of the adaptive immune response of vertebrates. For an 

animal to neutralize the pathogens it will encounter in its lifetime, the diversity of antibodies 

it will need to produce is enormous. Vertebrates achieve this through genetic recombination of 

immunoglobulin genes and post-somatic transcription mutations applied to so-called 

“germline” alleles. Bovine antibodies have distinct immunogenetics. Available annotation 

tools are human-centric, and therefore not optimized to annotate bovine immunoglobulin 

sequences. The international ImMunoGeneTics information system (IMGT) database is a 

global database reference in immunogenetics and immunoinformatics. Some information of 

germline alleles from the IMGT database is not up to date for most species and germline gene 

databases, which are not complete. Studies of germline alleles identification of cattle through 

novel allele discovery are necessary to complete germline gene databases of species. These 

discoveries are one step towards understanding the immunological complexity of these species. 

Using simulated bovine datasets, benchmarking the performance of three annotation tools 

IgBlast, IMGT/HighV-QUEST, and MiXCR was done based on frequencies and distribution 

of the correctly and wrongly identified antibody sequences. Two methods of germline allele 

discovery IgDiscover and TIgGER are evaluated to determine their suitability for bovine 

germline allele discovery. Immunoglobulin M sequences of three African bovine breeds, 

Ndama, Ankole, and Boran, were used in this analysis while the Friesian cattle breed used as 

a control. For annotation of VH gene, IMGT/HighV-QUEST and IgBlast yielded a more 

accurate annotation with a 4% error rate, compared to MiXCR, which had a 13% error rate. 

MiXCR annotated JH genes with an error rate of 15% compared to IgBlast and IMGT/HighV-

QUEST, which had an error rate of 40% and 43%, respectively. IgDiscover identified 18 novel 

alleles in Boran, 6 novel alleles in Ndama, and 3 novel alleles in Ankole. TIgGER, on the other 

hand, identified 7 novel alleles in Boran, 18 novel alleles in Ndama, and 1 novel allele in 

Ankole. Using pairwise Hamming distances of these novel alleles, it was observed that African 
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novel germline alleles are more diverse compared to the Friesian novel germline alleles. This 

discovery of novel alleles shows that there is a need for further studies in characterizing the 

immune system of African breeds.
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CHAPTER 1: INTRODUCTION 

1.1. Background 

Immunoglobulins are vital molecules of the adaptive immune response in vertebrates. They 

are composed of two identical copies of a heavy chain and two exact copies of a light chain, 

each consisting of a variable and constant region. The variable domain is directly involved in 

the binding of antigens and is composed of framework regions (FWR) and complementarity 

determining regions (CDR). CDR are segments of the variable domain that bind to the antigen, 

and each heavy chain and light chain contains three CDR. The third CDR of the heavy chain 

(CDR H3) plays a dominant role in antigen binding. 

In most cases, species have CDR H3 that forms a simple loop of about 8 to 16 amino acids, 

primarily in humans. Bovine antibodies have ultra-long CDR H3 occupying around 10% of 

the antibody repertoire. They have a difference in the distribution of their lengths, ranging from 

40 to 70 amino acids (Haakenson et al., 2018). 

To neutralize pathogens, the immune system has developed mechanisms to produce a large 

pool of immunoglobulins. One of the mechanisms is that multiple genes jointly encode the 

antigen-binding region. The variable heavy chain domain is encoded by the variable (V), 

diversity (D), and joining (J) genes. In contrast, the light chain domain is encoded by V and J 

genes (Chaudhary & Wesemann, 2018). These genes at the beginning are separated in the 

germline genome and are later contiguously joined by a process called V (D) J recombination. 

V (D) J recombination is augmented by the process called somatic hypermutation resulting in 

an enormously diverse repertoire of immunoglobulins. Antibodies with higher specific affinity 

to particular antigens are produced by a process called affinity maturation. Further diversity is 

also achieved by V (D) J recombination through nucleotide insertion or deletion processes at 

the junction between V and D, and J or V and J gene segments. Two different nucleotide 

additions result in this kind of junction diversity, i.e., palindromic P nucleotide addition 
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followed by N nucleotide insertions by terminal deoxynucleotidyl transferase (TdT) (Ye, Ma, 

Madden, & Ostell, 2013). 

Currently, advances have been made in repertoire sequence analysis for both B-cells and T-

cells. These strategies have allowed comprehensive repertoire sequencing analysis to be 

applied to different research areas such as; understanding the diversity of T & B cell repertoire 

generated upon infection, production of monoclonal antibodies and investigation of immune 

surveillance in specific diseases (Ye et al., 2013 ; Jackson et al., 2014). Characterization of 

germline genes is vital in understanding and interpreting repertoire sequence data. IMGT (The 

international ImMunoGeneTics information system) is a public repository that collates 

germline genes by species (Neuberger, 1992). Some information of germline alleles from 

IMGT is not present for most species, as well as germline gene databases, are not complete, 

making studies of the repertoire partially informative. For example, according to IMGT, the 

bovine IgH locus located in chromosome 21 contains 25 functional alleles derived from 13 

IGHV genes, 21 IGHD genes with 21 functional alleles, and 3 IGHJ genes with four functional 

alleles all derived from European Bos taurus breeds. In contrast to humans, IMGT is updated 

and contains 306 functional alleles from 56 IGHV genes, 23 IGHD genes with 30 functional 

alleles, and 6 IGHJ genes with 13 functional alleles (these values were obtained from IMGT 

database on July 1st, 2020). The lack of allelic diversity captured for bovine germline alleles 

in the IMGT database brings to light a need for characterizing African bovine breeds. 

One step towards identifying novel germline alleles is by using germline gene discovery tools 

on IgM immunoglobulin sequences. However, this is problematic because the analysis is 

affected by factors related to somatic hypermutation and sequence errors. It is necessary to 

validate different methods of germline gene discovery methods to assist in characterizing 

germline genes of species that have been unarchived in the database (Berens, Wylie, & Lopez, 

1997). 
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Another challenge is that most VH gene annotation tools, which have been designed for human 

or mouse data, have not been optimized for bovine immunoglobulin sequences that are unique 

in their presentation of ultra-long antibodies. IGHV1-7 gene, which is responsible for the 

formation of ultra-long CDR H3, is not always annotated correctly. Ultra-long CDR H3s are 

thought to provide additional antigenic diversity to compensate to the reduced number of 

germline genes in cows. Not much is known about the function of ultra-long antibodies; 

however, one study found broadly neutralizing and potent bovine ultra-long antibodies were 

elicited against an HIV antigen (Sok et al., 2018).  

1.2 Problem statement 

The variable domain of heavy chains contains three CDR regions and four FWR regions. The 

third CDR region is primarily responsible for the binding of the antigen. In bovine, studies 

have shown ultra-long antibodies CDR H3 sequence use the IGHV1-7 gene. IGHV1-7 gene 

preferentially recombines with the IGHD8-2 gene in ultra-long antibodies. Shorter CDR H3 

sequences appear to use IGHV1-10 preferentially (Deiss et al., 2019). 

Annotation of IGHV1-7 gene responsible for ultra-long CDR H3 antibodies is not correctly 

identified in bovine immunoglobulin sequences. IGHV1-7 gene has a CTTVHQ motif towards 

the 3’end. This motif is thought to be necessary for stabilizing the ultra-long CDR H3 regions. 

Tests were run using sequences that are IGHV1-7 gene because they contained a CTTVHQ 

motif at the 5’ end of its CDR H3. These sequences were incorrectly annotated before, and the 

purpose was to find out if the annotation tools could rectify this mistake. It is seen that the 

three available annotation tools do not provide a correct annotation for this gene. Instead, the 

gene call is mistaken for other genes. Also, annotations of bovine immunoglobulin sequences 

have not been benchmarked based on accuracy. These hurdles in annotation are brought about 

by not many studies done in annotating bovine immunoglobulin sequences and the fact that 

these annotation tools are human-centred. 
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Germline gene discovery affects germline gene alignments, which are very critical for most 

downstream analyses carried out on B-cell receptor (BCR) data, such as identifying somatic 

mutations, clonal grouping, and diversity approximations, among others. Also, in applied 

approaches, germline gene discovery informs the ability to design amplification primers for 

the high-throughput cloning of heavy chains and light chains to segregate immunoglobulins of 

potential therapeutic value. Several tools have been developed for aligning immunoglobulin 

sequences and predicting germline gene sequences (Gadala-Maria, Yaari, Uduman, & 

Kleinstein, 2015; Corcoran et al., 2016). These have been tested on IgM immunoglobulin 

sequences of mammalian species like humans, mice, and monkeys but not on bovine species. 

1.3 Justification 

Identification of germline genes is worth doing not purely for discovering mechanisms of 

generating immunoglobulins but also part of characterizing germline genes in livestock. Most 

of the tools developed for this kind of analysis have been mainly tested on human 

immunoglobulin RNA sequences generated through next-generation sequencing platforms. 

This represents an outstanding analysis in characterizing species whose germline genes 

database is incomplete. For example, in the current study, African bovine breeds. 

Germline discovery is seen to be a success in human immunoglobulin sequences (Corcoran et 

al., 2016). Unfortunately, tools are underdeveloped to address the same analysis on bovine 

immunoglobulin, especially of the African breeds. This project sought to predict bovine 

germline genes employing commonly used germline allele discovery tools. In the process, 

some parameters of these tools were optimized for bovine immunoglobulin sequences. 

Through this, characterizing germline genes of African bovine breeds is achieved, which is 

consequential in understanding and interpreting repertoire sequence data. 

It is, therefore, essential to evaluate available software for germline gene discovery to advice 

on the most effective tool in terms of efficiency and accuracy. Since these tools have not been 
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used on bovine immunoglobulin sequences, testing the suitability of various tools on this data 

set will also guide the most acceptable tool for the bovine data set. 

1.4 Objectives 

1.4.1 Overall objective 

To benchmark and optimize annotation of bovine immunoglobulin sequences and to evaluate 

discovery and diversity of novel germline alleles in selected African bovine immunoglobulin 

sequences.  

1.4.2 Specific objectives 

1. To assess immunoinformatics tools i.e. IMGT/HighV-QUEST, IgBlast and 

MiXCT for annotation of bovine immunoglobulin sequences. 

2. To predict novel germline alleles of three African cattle breeds using IgDiscover 

and TIgGER 

3. To determine the genetic diversity of novel germline alleles using pairwise 

Hamming distances.  
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CHAPTER 2: LITERATURE REVIEW 

2.1. Antibody Structure 

Immunoglobulins (Ig), are proteins presented by the body's immune system when it encounters 

molecules foreign to the body (antigens). Each immunoglobulin consists of four polypeptide 

chains; two identical heavy chains and two identical light chains joined by a disulfide bond to 

form a 'Y' shaped molecule (Figure 1). The heavy chain consists of more complex polypeptides 

weighing about 50 kDa or more, whereas the light chain possesses polypeptides of 

approximately 22 kDa. In mammals, there are five Ig heavy chains denoted as; α, δ, ε, γ, and 

μ that define classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM respectively. There are 

two varieties of light chains: kappa (κ) and lambda (λ) (Cohen & Cohen, 1962). 

Immunoglobulins are made up of the variable region and constant region. The region with high 

diversity is called the variable region. The region that is conserved with a permanent structure 

is considered the constant region. 

 

Figure 1. This is a Y-shaped antibody structure showing variable and constant region. The 

portion in red is the variable gene (V); green is the joining gene (J); yellow is the diversity 

gene (D), and blue is the constant region of the heavy chain locus. Image modified from: Yaari 

& Kleinstein, 2015. 
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2.2 Hemopoiesis 

Hemopoiesis or hematopoiesis is equally known as blood cell formation. Blood cells are 

divided into three groups: leukocytes (white blood cells), erythrocytes (red blood cells), and 

thrombocytes (platelets). The leukocytes are further sub-divided into granulocytes and 

monocytes. Blood cells originate from the bone marrow. In an adult human, the bone marrow 

produces 60-70 per cent of leukocytes (that is the granulocytes), all erythrocytes, and all 

platelets. The lymphatic tissues have 20-30 per cent of leukocytes. 

Leukocytes are immune cells involved in protecting the body against foreign pathogens. They 

are produced from multipotent cells in the bone marrow known as hematopoietic stem cells 

(HSC). HSC can be differentiated into two lineages, lymphoid and myeloid. Lymphoid lineage 

cells develop during lymphopoiesis and include B-cells, T-cells, natural killer cells, and 

dendritic cells. Many of these cells are short-lived, and immune system homeostasis requires 

differentiation and self-renewal (Brand & Livesey, 2011). 

The B-cells mature in the bone marrow (figure 2). The first stage of B-cell maturation is the 

evaluation of its functionality which is antigen-independent. This occurs by selecting B-cells 

with typical functional receptors, a process called positive selection. The body, however, 

possesses a mechanism to reduce autoimmunity by negative selection. The method used to 

eliminate self-reacting B-cells is through apoptosis, editing, or modification of the receptor so 

that they no longer self-react. Selected B-cells are transported to the spleen, where they 

undergo the final stage of maturation. They become naive mature B-cells (Jagannathan-Bogdan 

& Zon, 2013). Mature naïve B-cells surfaced on IgM antibodies migrate to the secondary 

lymphoid tissue. At the lymphoid tissues, B-cells then interact with an exogenous antigen and 

or T helper cells. The B-cells are activated, and class-switching occurs at this stage. Class-

switching is a mechanism that changes a B-cell's production of an antibody from one type to 

another, for example, from isotype IgM to the isotype IgG. Once B-cells are activated, they 
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participate in a two-step differentiation process that yields both short-lived plasma cells for 

immediate response and long-lived plasma cells and memory cells for continuous protection. 

 

Figure 2. This illustrates the B-cell maturation process in two steps i.e. antigen-independent 

phase and antigen-dependent phase. Source of the diagram – W. Levinson, P. Chin-Hong, E.A. 

Joyce, J. Nussbaum, B. Schwartz.  

2.3 General genetics of immunoglobulins 

The immunoglobulin light and heavy chain are encoded by three different gene families, each 

one on a distinct chromosome - one for the heavy chain and the other for the light chain types. 

Each of these gene families has multiple V (variable) region genes and one or more C 

(constant) region genes. 

The heavy chain has many V region genes; each composed of leader region and V exon and 

three to four C chains depending on various species. In addition to J genes, the heavy chain 

also contains D (diversity) genes. The variable domain of the heavy chain consists of two 

regions called the complementarity determining regions (CDR) and framework regions (FWR) 

(Ichihara, Matsuoka & Kurosawa, 1988). 

The light chain is made up of either kappa or the lambda chains. The lambda light chain is 

made up of 4 C genes, and for each subtype, approximately 30 V region genes. Each of the V 

region genes has two exons, L that codes for leader region and V that encodes for most of the 

variable regions. Upstream of the C genes, is an additional exon called J (joining). Introns 

separate these exons L, V, and J. 
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The kappa light chain gene family has only one C gene with multiple V region genes, each of 

which has an L exon and a V exon. There are several J genes in between V and C genes (Collins 

& Watson, 2018). 

2.4 Genetic diversity generation in immunoglobulins 

There are three primary ways of generating antibody diversity; V (D) J rearrangements, 

somatic hypermutation (SHM), and affinity maturation. 

As the B-cells differentiate to mature B cells, processes occur in the heavy chains of 

immunoglobulins by which various gene segments are rearranged before exposure to the 

antigen. Two rearrangement processes take place. First, one of the D genes is brought next to 

one of the J genes, and then one of the V genes is carried next to the rearranged DJ region 

resulting in the VDJ recombination event. These processes occur by two recombination events 

involving the removal of introns. As with the light chain, the selection of the heavy chain V 

gene is not entirely arbitrary, but ultimately, all of the V genes stand a chance to be included in 

some mature antibody. 

Unique flanking sequences referred to as recombination signal sequences (RSS), which flank 

the V, D and J exons, also undergo recombination. Each RSS consists of a nanomer and a 

heptamer that are separated by either 12bp or 23bp. The 12bp and 23bp spacers correspond to 

one or two turns of the DNA helix. In heavy chains, there is a single turn signal on each side 

of the D gene, a two-turn signal downstream of the V gene and a two-turn signal upstream of 

the J gene. This ensures the occurrence of the correct recombination event. The recombination 

event is catalyzed by two proteins, Rag-1 and Rag-2 (Sodofsky, 2001). 

The second way of antibody diversification is through SHM to generate high-affinity antigen-

binding sites. SHM involves the mutation process of the deamination of cytosine to uracil in 

DNA, affecting the variable regions. Unlike germline mutations, SHM affects only the 

organism's immune system, and its effects cannot be passed to the organism's offspring (Oprea, 

M. 1999). 
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Affinity maturation is the process through which activated B-cells produce immunoglobulins 

that demonstrate an increased affinity for a specific antigen. With constant exposure to the 

same antigen, antibodies with more profound affinity will be produced. This process is a result 

of SHM and occurs on the surface of the immunoglobulins (Victora & Nussenzweig, 2012). 

2.5 Bovine immunoglobulin genetics  

The structure, occurrence, and function of antibodies in bovine are consistent with the general 

patterns described in more extensive studies for species like rabbits, humans, guinea pigs, and 

mice. The germline genetic component of the bovine immunoglobulin repertoire is limited 

compared to humans, mice, and other species. The heavy chain locus of cattle has 12 functional 

V genes, 23 D genes, and 4 J genes segments, while the humans have 36-49 V, 23 D, and 6 J 

genes. This difference has shown that bovine has much lesser combination diversity in theory 

(Haakenson et al., 2018). 

A subset of bovine antibodies contains ultra-long CDR H3. It has been shown that bovine ultra-

long antibodies preferentially use a given heavy chain V gene segment (IGHV1-7) and a 

specific heavy chain D gene segment (IGHD8-2) (Shojaei, Saini & Kaushik, 2003). Those are 

longer than the other V and D gene segments. Moreover, the ultra-long heavy chain appears to 

preferentially pair with the lambda light chain (Butler, 1998).  

The IGHV1-7 and IGHD8-2 genes mentioned earlier, facilitate the formation of ultra-long 

CDR H3 in cattle antibodies. Alignment of IGHV1-7 with other IGHV genes has disclosed 

eight-nucleotide duplication "TACTACTG" at its 3' end. Compared to other IGHV genes used 

in bovine, IGHV1-7 has low amino acid variability (Deiss et al., 2019). Therefore, the diversity 

of ultra-long cow antibodies is heavily concentrated in the CDR H3, which is mainly encoded 

by the IGHD8-2 gene. This region encodes most of the ultra-long CDR H3 after the motif 

"CTTVHQ". This motif helps to stabilize the ultra-long CDR3 H3 segment (Wang et al., 2013). 
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2.6 Antibody novel germline allele discovery and annotation 

V (D) J recombination events constitute the first step towards antibody repertoire diversity. 

During an immune response, B-cells that are activated by the binding of their matching 

antigens undergo clonal expansion followed by somatic hypermutations (SHMs). These 

mutated immunoglobulins are selected depending on binding strength to the antigen resulting 

in higher affinity antibodies – a process called affinity maturation. 

Currently, there are, for example, documented functional alleles in the IMGT database of 

diverse species. Studies have shown species often carry novel alleles that have not yet been 

characterized in the IMGT database (Kirik, Greiff, Levander & Ohlin, 2017). These 

unidentified novel alleles can be problematic for immunoglobulin repertoire analysis because 

single nucleotide polymorphisms (SNPs) between novel alleles and the nearest IMGT alleles 

will be counted as SHMs instead (Wendel, He, Crompton, Pierce & Jiang, 2017). However, 

there are tools to predict the existence of these novel alleles explained in this project. 

Annotation of the antibody repertoire means identifying the complementarity determining and 

framework regions. Some work has been done so far in characterizing European Bos 

taurus breeds and deposited on the IMGT. This project optimized the annotation of bovine 

immunoglobulin and discovered novel alleles in African species since there are novel alleles 

on its germline because of its great diversity.  

2.7 Immunoglobulin annotation tools 

Commonly used annotation tools like IMGT/HighV-QUEST, MiXCR, and IgBlast are used 

for annotation of immunoglobulin sequences. IMGT is a reference database for 

immunogenetics and immunoinformatics. There are different tools on this web tool - one being 

IMGT/HighV-QUEST (sequence alignment for immunoglobulins and T-cell receptor). 

IMGT/HighV-QUEST is used for annotations of immunoglobulins. A user uploads sequences 

in fasta file on the web tool, specifying the organism and locus. Once uploaded, alignments 

and annotations are done. The output obtained from the website is a compressed file that has 
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various annotation files. Of interest are the summary file, amino acid sequence file, and 

nucleotide sequence file. In these files, the user has information on annotations of the various 

regions, the functionality of the sequences, and sequences for the annotated regions. 

The process of MiXCR is made up of three steps; align reads to the reference database for 

which IMGT libraries have to be installed initially. Next reads are assembled into clonotypes 

(identical sequence reads clustered/grouped as a clone) using alignment from the first step, and 

lastly exporting the output to human-readable files for analysis. 

IgBlast was developed at the National Center for Biotechnology Information (NCBI). It allows 

users to view calls of germline V, D, and J genes; information of junction rearrangement; 

characterization of immunoglobulin V region domain framework and complementarity 

determining regions. It can analyze both nucleotide and protein sequences. The searches of 

these germline V (D) J genes are against germline gene databases IMGT and other sequence 

databases such as VBASE2 (Retter, Althaus, Münch & Müller, 2005) concurrently to 

maximize the chance of getting possible matching germline VH genes. 

2.8 Germline allele discovery tools 

Investigations have been performed on data from humans to seek to predict germline alleles in 

immunoglobulins leading to the development of germline allele discovery tools. There are both 

online tools and standalone, offline software (Wendel, He, Crompton, Pierce & Jiang, 2017; 

Gadala-Maria, Yaari, Uduman & Kleinstein, 2015; Corcoran et al., 2016). In this project, 

standalone tools were explored. These tools were developed for human antibody sequences 

analysis; the tools are then assessed on bovine antibody sequences. 

In this study, IgDiscover and TIgGER were tested. The selection of these tools was since they 

are open source, their codes are freely available for adjustment to fit the used data set, and they 

all approach the problem in different ways as explained below. 
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IgDiscover is written in Python and works based on identifying consensus sequences that have 

been clustered to an initial database. For it to perform effectively, it requires at least 400,000 

paired-end reads to determine the fully expressed germline repertoire of an individual. 

IgDiscover considers four critical steps in its workflow; i) initial assignment of starting 

database using IgBlast, ii) clustering to identify candidate germline sequences, iii) germline 

filtering, i.e., pre-germline filter and germline filter to retaining the correct germline sequences 

that are output as a new database replacing the initial database and finally iv) the first three 

steps are repeated using the newly created database produced in the previous iteration. The 

number of iterations to run IgDiscover is not limited. However, at the last iteration, germline 

filtering is done, i.e., stricter filtering criteria are applied to produce an individualized germline 

V database.   

TIgGER (Tool for Immunoglobulin Genotype Elucidation via Rep-Seq) is an R package that 

infers a set of immunoglobulin alleles (including novel alleles) carried by an individual. It then 

uses this set of alleles to correct the initial assignments. The package covers three main tasks; 

i) novel allele detection, ii) inferring genotype, and iii) correcting allele calls. 

In this study, a comparison on the performance of three annotation tools, that is, IMGT/HighV-

QUEST (Lefranc et al., 2009), IgBlast (Ye, Ma, Madden, & Ostell, 

2013) and MiXCR (Bolotin et al., 2015) was done. Prediction of novel bovine germline alleles 

was then done using IgDiscover (Corcoran et al., 2016) and TIgGER (Gadala-Maria, Yaari, 

Uduman, & Kleinstein, 2015). 
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CHAPTER 3: MATERIALS AND METHODS 

This thesis project was undertaken as part of a bigger research project hosted by the 

International Livestock Research Institute (ILRI). The work focused on the bioinformatics 

analysis of already available sequence data of immunoglobulin heavy chain repertoires 

prepared at ILRI.  

3.1. Benchmarking and optimizing annotation tools  

3.1.1. Simulated bovine datasets generation  

There isn’t a gold standard dataset for validating bovine B cell repertoire sequence annotation 

tools. For this reason, a bovine repertoire was simulated using IgSimulator version 2.0 

(Safonova, Lapidus & Lill, n.d., 2015) to enable conducting a fair comparison of available 

tools. IgSimulator tool used the IMGT germline gene database as an input. It first generated a 

base antibody sequences using the simulation of the VDJ recombination process. Then, 

randomly assigned counts to each base antibody sequence using power-law distribution. It then 

introduced somatic mutations in each base antibody sequence resulting in a mutated sequence.  

On each mutated sequence, it assigned counts using power-law distribution to generate 

antibody repertoire. This antibody repertoire was then subjected to next-generation sequencing 

read simulator ART Version 2.1.8 (Huang, Li, Myers & Marth, 2012) to generate Illumina 

paired-end reads. Simulation of a diverse and a polarized antibody repertoire was done. Diverse 

repertoire constitutes a high number of low abundant clusters of mutated sequences, whereas 

the polarized repertoire represents an increased number of repetitive clusters. For the diverse 

antibody repertoire, the number of base antibody was set as 100,000, and the number of 

mutated antibodies was set to 200,000. For the polarized antibody repertoire, the number of 

base antibody was set as 20,000 and mutated antibody 100,000 (Smakaj et al., 2019). A high 

number of base antibody and a slight difference between the number of base antibody and 

mutated antibodies results in simulation of a repertoire with a large number of different lowly 

abundant clusters. The low number of the base antibody with a big difference between the base 
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antibody and mutated antibodies leads to a simulation of a repertoire with a small number of 

different highly abundant clusters. IgSimulator simulates antibody repertoire by modeling how 

they are generated through the complex process of VDJ recombination, somatic 

hypermutations, and intergenic insertions. The simulation process happens in five steps as 

illustrated in figure 3;  

 

Figure 3. A five-step IgSimulator workflow of simulating an antibody repertoire.  

 

3.1.2. Adaptive Immune Receptor Repertoire sequencing (AIRR seq) annotation 

Three annotation tools were used for this analysis - IgBlast, MiXCR, and IMGT/HighV-

QUEST. They produced a tab-separated annotation output file that was used to compare with 

read recombination text file. 
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IgBlast annotated V, D, and J genes of input sequences by matching these regions to germline 

gene libraries downloaded from NCBI. It used default BLAST search parameters (Ye, Ma, 

Madden & Ostell, 2013). IgBlast version 1.15.0 was used in this analysis. IMGT/High V-

QUEST identified V, D, and J genes and alleles by alignment with the IMGT reference 

germline gene and allele sequences (Wirtz & Sayer, 2014). IMGT/HighV-QUEST version 

3.4.15 was used. MiXCR handled both paired and single-end reads. It aligned these reads with 

high V and J gene assignments accuracy. It further assembled identical reads into clones and 

corrects sequence and PCR errors (Bolotin et al., 2015). MiXCR version 3.0.10 was used. 

IgBlast and IMGT/HighV-QUEST used the IMGT germline reference database, whereas 

MiXCR used specific built-in V/D/J/C libraries. IgBlast, IMGT/High V-QUEST and MiXCR 

were used to compare their annotation of simulated bovine datasets. Validation of the accuracy 

of each annotation tool was assessed using the simulated bovine datasets. The analysis was 

done at the gene level since MiXCR does not annotate at the allele level. 

The benchmarking workflow was generated using R program version 3.6.2 platform. All R 

scripts for the analysis are provided in a git repo 

https://github.com/LandiMi2/Msc_Bioinformatics_Project. The comparison was made based 

on frequencies of misidentification as well as their distributions, as displayed in figure 4.   

 

https://github.com/LandiMi2/Msc_Bioinformatics_Project
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Figure 4. Benchmarking steps executed to compare IgBlast, IMGT/High V-QUEST and 

MiXCR annotation tools. Read V (D) J recombination file contains names of V, D, and J 

germline genes of each antibody in the antibody repertoire. This file is considered as the “true” 

VDJ genes that will be used to compare annotation outputs of each tool used in the benchmark.     

3.1.3. Modifying germline JH and VH genes 

Bovine immunoglobulin generation appears to utilize only two JH genes IGHJ1-6 and IGHJ2-

4 (Stanfield et al., 2018). Therefore, the simulated dataset was generated these germline JH 

genes.  

In addition, IGHV1-33 gene has 100% nucleotide identity to IGHV1-21*01 allele. They are at 

different loci in the bovine immunoglobulin locus and are likely a result of gene duplication. 

The simulated dataset was generated having only one of the identical VH genes, i.e. IGHV1-

21*01 was used, and IGHV1-33 gene discarded. The simulation was done after these 

adjustments, and mishits frequencies comparison was also performed.                   
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3.2. Germline allele discovery  

IgM bovine immunoglobulin sequences from three African breeds i.e., Ankole breed had 

292,276 reads for both forward and reverse reads, Boran breed had 285,306 reads for both 

forwards and reverse reads, Friesian breed had 450,999 reads for both forward and reverse 

reads, and Ndama breed had 222,483 reads for both forward and reverse reads. These 

sequences were used in this analysis. Holstein Friesian cattle breed was also used in the 

analysis as a control because it is the only western breed in this analysis.    

3.2.1. Germline allele discovery using IgDiscover 

IgDiscover (Corcoran et al., 2016) identified novel germline VH alleles by an iterative process. 

For the discovery analysis to begin: - fasta or fastq files of single or paired-end reads from the 

variable region of BCR sequencing are required. Paired-end reads fastq files of the bovine 

breeds were used. Bovine VDJ germline database sequences were also required. IMGT bovine 

database sequences were downloaded from http://www.imgt.org/vquest/refseqh.html.  

IgDiscover doesn’t identify IMGT long sequences headers, and therefore, instructions on 

setting up germline database for the tool were followed to comply with IgDiscover conditions. 

Ultimately, a configuration file is needed that describes the library. This configuration file is 

adjusted to fit the experiment. In this analysis, the number of iterations to 20 and 30 was 

amended. These recommendations were determined from multiple trials of 2, 3, 5, 10, 20, and 

30 iterations. To give an indication of whether novel alleles are being discovered at every 

additional iteration. The number of iterations at which individualized databases (new database) 

produced reached a plateau differs for each breed. Ankole, Boran and Friesian reached a 

plateau at 20 iterations whereas Ndama required 30 iterations. Pre-germline and germline 

filtering parameters control the differences between the database gene and a sequence to be 

assigned in a cluster. The requirements of the minimum number of unique JH genes in both 

pre-germline and germline filters was reduced to one. As earlier mentioned in section 3.2.3, 

bovine immunoglobulin repertoire has been observed to express only two JH genes, of which 

http://www.imgt.org/vquest/refseqh.html
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IGHJ2-4 is predominantly expressed. That is why this parameter is set to one. Other parameters 

in the configuration file were set as default. 

3.2.2. Germline gene discovery using TIgGER 

TIgGER uses IMGT/HighV-QUEST or Change-O (Gupta et al., 2015) output for its analysis. 

Four bovine breeds were used in this analysis. TIgGER version 1.0.0 was downloaded from 

CRAN (https://cran.r-project.org). The reference germline database IGHV (gapped) was 

derived from the IMGT database. The process of discovering novel alleles entails aligning all 

sequences to a particular germline gene. A plot is generated of mutation counts at each position 

in the alignment. This is determined as a function of sequences-wide mutation counts. Three 

pieces of evidence are necessary for a sequence to qualify as a novel sequence. First, the y-

intercept of the plot is arbitrarily set as 1/8 by default. Passing this y-intercept threshold is one 

evidence. Secondly, it was expected that the polymorphic allele to be shared at all mutational 

frequencies, and the mutation counts to correspond to the number of polymorphisms. Lastly, 

novel sequences should utilize a wide range of JH genes.  

When discovering novel alleles for this experiment, two parameters were adjusted; that is, 

j_max and min_seqs. The j_max setting is the maximum fraction of sequences precisely 

aligning to a possible novel allele that can utilize a particular combination of junction length 

and JH gene. The j_max parameter was set to one to switch off the filter for JH gene diversity 

because bovine breeds utilize fewer JH genes. The min_seqs parameter is the minimum 

number of total sequences required by a sample within the desired mutational range to be 

considered a novel sequence. This was also reduced from 50 to 15. Other parameters were set 

as default for the discovery process.  

3.2.3. Haplotype networks 

Novel alleles discovered were represented using haplotype networks. The HaploNet function 

in the pegas R package was used to generate these networks. Haplotype networks are based on 

Hamming distances between sequences. Unique sequences define haplotypes in this analysis. 

https://cran.r-project.org/
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CHAPTER 4: RESULTS 

4.1.  IgSimulator outputs  

The outputs from IgSimulator tool were used as inputs for the annotation and benchmarking 

analysis. These outputs were: - Illumina paired-end reads that was used as an input in MiXCR 

annotation tool; merged read file as a result of combining forward and reverse read was used 

as an input in IgBlast and IMGT/HighV-QUEST annotation tools; and read recombination file 

that contains all the information about V (D) J recombination for each reads from the merged 

file. This file represented the “True” V (D) J germline gene information of each antibody 

recombined in the repertoire simulated and used as the benchmark dataset to compare the 

annotation outputs of IgBlast, IMGT/HighV-QUEST and MiXCR. 

4.2. Benchmarking annotation of simulated bovine immunoglobulin sequences 

4.2.1. Misidentification frequencies  

From the comparison, MiXCR had the highest frequencies of incorrect calls having wrong 

matches of 33,754 out of 269,672 (13%) antibodies for VH gene annotation compared to 

IMGT/HighV-QUEST (16,346  out of 420,668 antibodies) and IgBlast (15,826 out of 420,668 

antibodies) that had the same mishit percentage frequency of 4% (Figure 5). 
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Figure 5. Bar plots for the predicted percentage of mishits frequencies at the gene level. 

Percentage mishits counts of each annotation tool (red – VH gene calls, green – DH gene calls 

and blue – JH gene calls).  

IMGT/HighV-QUEST had the highest misidentified counts of DH genes of 291,328 out of 

420,668 (69%) antibodies. IgBlast also showed a high frequency of incorrect calls in DH gene 

annotation of 178,229 out of 420,668 (42%) antibodies. These higher misidentified frequencies 

for DH genes were as a result of unassigned DH genes in both IgBlast and IMGT/HighV-

QUEST (Figure 6). IMGT/HighV-QUEST and IgBlast cannot assign the DH and JH genes and 

alleles when no DJ rearrangement is identified in the submitted sequences. 
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Figure 6. Bar plot for the percentage of unassigned genes of IgBlast and IMGT/HighV-

QUEST.  

While bovine utilize only two JH genes, modification of the germline JH gene germline 

database was done to contain only IGHJ1-6 and IGHJ2-4 alleles. Furthermore, for the germline 

VH alleles, the IGHV1-33 gene was deleted, a duplicate of IGHV1-21 gene. After modifying 

these germline database, an antibody repertoire was simulated, then annotation, and finally 

compared the annotation outputs. Figure 7 shows the comparative percentages of incorrect 

calls modifying germline VH and JH genes. IgBlast and IMGT/HighV-QUEST have 0% 

misidentification value for VH genes compared to MiXCR having 10%. However, MiXCR has 

a better J gene annotation of 100% percentage correct calls.   
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Figure 7. Bar plots for the predicted percentages of incorrect identifications after modifying 

the germline VH and JH database.  

IgBlast and IMGT/HighV-QUEST annotation outputs have a more favorable outcome of VH 

gene annotation with reduced error rate counts of 1,321 and 1,836 incorrect identification 

respectively out of 432,849 antibodies. MiXCR still has a high error rate of 26,038 mistaken 

identifications out of 271,552 (10%) antibodies in annotating VH genes. MiXCR improved its 

annotation of the JH gene with an error rate of 54 misidentifications out of 271,552 (0%) 

antibodies compared to IMGT/HighV-QUEST and IgBlast that still had an error rate of 

149,560 wrong identification out of 432,849 (35%) antibodies and 134,834 out of 432,849 

(31%) antibodies, respectively. 

4.2.2. Distribution of correct and incorrect VH gene annotation 

To further investigate why genes were being misidentified. Heat maps were generated from 

the frequencies of incorrect calls of the unmodified germline database. Figure 8 shows that 

IgBlast and IMGT/HighV-QUEST VH gene annotation had relatively fewer numbers of 

inaccurately annotated genes compared to MiXCR. Across all tools, it was evident that the 

IGHV1-21 gene was misidentified as the IGHV1-33 gene as they are identical at the nucleotide 
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level. IMGT/HighV-QUEST and IgBLAST correctly annotated two V pseudogenes IGHV1S1 

and IGHV2S1. MiXCR was poor at annotating these two pseudogenes. 

A

 



25 

 

 

 

B 



26 

 

 

 

C  

Figure 8. Distribution of hits and mishits for all tool’s V gene annotation. A cross table is 

generated having predicted true V gene calls and annotation tool V gene calls. The matrix is 

used to generate a heat map in this analysis. The counts were log-transformed. Results for 

IgBlast – labeled A, IMGT/HighV-QUEST – labeled B and MiXCR – labeled C are shown. 

IGHV1-7 gene was done correctly for IgBlast and MiXCR, whereas IMGT/HighV-QUEST 

misidentified the gene with low counts as IGHV1-10 and IGHV1-21 genes. Across all tools, 

the IGHV1-37 gene is misidentified as IGHV1-25. IGHV1-37 gene and IGHV1-25 have a 

98.63% sequence identity at the nucleotide level and a 100% identity at the protein level. 

Across all tools, the IGHV1-30 gene and IGHV1-27 gene are misidentified as IGHV1-17 and 

IGHV1-20. IMGT/HighV-QUEST and IgBlast misidentified the IGHV1-39 gene as IGHV1-

17 and IGHV1-20. MiXCR misidentified the IGHV1-39 gene as the IGHV1-7 gene.  
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4.3. Germline allele discovery  

4.3.1. Novel alleles discovered by IgDiscover 

Expressed IgM bovine repertoire sequences of Ankole, Boran, Friesian and Ndama breeds 

were subjected to IgDiscover (version 0.12). This analysis used the Friesian breed as a control. 

IgDiscover identified 58 novel alleles for the Friesian breed, 18 novel alleles for Boran breed, 

six novel alleles for Ndama breed, and three novel alleles for Ankole breed. Figure 10 presents 

the final number of alleles discovered at the end of the last iteration and figure 9 presents 

number of alleles identified after pre-germline filtering.  

 

Figure 9. Individualized database VH alleles buildup of Ankole, Boran, Friesian and Ndama 

before germline filtering. Note that these numbers of VH alleles are after pre-germline filtering, 

which is a less strict filtering criterion. 20 iterations were run for Boran, Friesian and Ankole 

breeds, and 30 iterations for the Ndama breed in order to reach a plateau everywhere.   

Boran 

Friesian 

Ndama 
Ankole 
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Figure 10. The line graph shows individualized database VH alleles built up of each bovine 

breed after germline filtering. Friesian had the most discovered novel alleles of 58. Three novel 

alleles are seen in Ankole breed, 18 in Boran breed and six in Ndama breed.   

 

Haplotype network for visualization of the Hamming distances of novel alleles discovered  

Haplotype network is created from pairwise Hamming distances for all the novel alleles of 

African bovine breeds discovered by both methods to assess their genetic relatedness. Pairwise 

Hamming distance gives a measure of genetic difference between novel alleles. Figure 11 

shows all novel alleles discovered by IgDiscover in African bovine breeds. Ndama (yellow 

circles in figure 11) was seen to have novel alleles very distant from each other. A few novel 

alleles observed in Boran (red circles) are distant, whereas novel alleles from Ankole (green 

circles) are too close, and one is quite distant from the other. Novel alleles of IGHV1-7 gene 

were not observed in Boran and Ndama, but one allele of this gene was observed in Ankole. 

Verification of this particular allele (IGHV1-7*01_S6322_Ankole) confirmed the presence of 

the characteristic CTTVHQ motif at the 5’ end of the IGHV1-7 gene. 

Boran 

 

 

Ndama 

Ankole 

Friesian 
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Figure 11. Haplotype network of novel alleles discovered by IgDiscover in three African 

breeds. Alleles from different breeds are represented in different color: Ankole in green (3 

novel alleles), Boran in red (18 novel alleles) and Ndama in yellow (6 novel alleles). The 

numbers decorating the edges are the Hamming distances between two novel alleles. 

Ranking of African novel alleles discovered by IgDiscover for wet-lab validation 

The novel alleles were ranked based on the following criteria: 

1. The number of sequences assigned to the allele. 

2. Cluster size of the allele. 

3. Number of unique CDR H3. 

4. Number of unique DH genes and JH genes the allele recombined with. 

5. Number of exact matches, which is a count of reads matching the novel allele exactly. 

6. Percentage difference of the sequences assigned. 
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This ranking is essential at the verification step, the potential novel alleles with the highest 

number of sequences assigned to it, cluster size and a high number of unique CDR H3s or and 

JH genes is considered first for the verification step.  Tables 1 - 3 list ranked novel alleles 

discovered in Boran, Ndama and Ankole breeds, respectively.  

 

Table.1. Novel alleles discovered in Boran breed ranked in descending order by number of 

assigned sequences. 

 Candidate 

novel allele 

Source 

of novel 

allele 

Cluste

r size a 

%differe

nce 

(modal) c 

No of 

sequences 

assigned b 

Unique 

CDR 

H3 Exact d 

Uni

que 

DHs 

IGHJ2- 

4 

counts 

1 

IGHV1-

27*01_S

4561 

IGHV1

-

27*01_

S4561 310 0.1 68498 55 130 10 67016 

2 

IGHV1-

10*01_S

6420 

IGHV1

-

10*01_

S6420 77 0.09 52293 11 25 8 51419 

3 

IGHV1-

14*01_S

0923 

IGHV1

-

14*01_

S0923 77 0.1 20078 7 16 7 18318 

4 

IGHV1-

17*01_S

7292 

IGHV1

-

17*01_

S7292 77 0.09 9524 7 15 7 9003 

5 

IGHV1-

10*01_S

5472 

IGHV1

-

10*01_

S5472 234 0.1 7814 12 46 7 7696 

6 

IGHV1-

20*01_S

6738 

IGHV1

-

20*01_

S6738 55 0.11 4985 4 16 7 4638 

7 

IGHV1-

20*01_S

0447 

IGHV1

-

20*01_

S0447 110 

1% ; 

13% 3467 11 38 6 3356 

8 

IGHV1-

14*01_S

0552 

IGHV1

-

14*01_

S0552 452 0.11 3447 10 62 3 2920 

9 

IGHV1-

27*01_S

9153 

IGHV1

- 65 0.1 1581 8 18 7 1564 
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27*01_

S9153 

1

0 

IGHV1-

17*01_S

9813 

IGHV1

-

17*01_

S9813 115 0.13 1514 7 53 1 1436 

1

1 

IGHV1-

17*01_S

7671 

IGHV1

-

17*01_

S7671 60 0.01 1101 41 253 3 1098 

1

2 

IGHV1-

14*02_S

1677 

IGHV1

-

14*02_

S1677 95 0.13 950 6 26 1 873 

1

3 

IGHV1-

20*01_S

2930 

IGHV1

-

20*01_

S2930 111 

1% ; 

13% 858 7 20 4 853 

1

4 

IGHV1-

21*01_S

7967 

IGHV1

-

21*01_

S7967 329 0.01 780 9 42 3 776 

1

5 

IGHV1-

30*01_S

4393 

IGHV1

-

30*01_

S4393 66 

1% ; 

11% 543 10 27 3 541 

1

6 

IGHV1-

17*01_S

2631 

IGHV1

-

17*01_

S2631 116 1% ; 9% 458 11 40 3 453 

1

7 

IGHV1-

30*01_S

3151 

IGHV1

-

30*01_

S3151 141 0.01 366 12 36 2 358 

1

8 

IGHV1-

30*02_S

6802 

IGHV1

-

30*02_

S6802 51 0.02 269 8 23 0 269 
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Table.2. Novel alleles discovered in Ndama breed ranked in descending order by number of 

assigned sequences.  

 Candidate 

novel allele 

Source 

of novel 

allele 

Cluste

r size a 

%differe

nce 

(modal) c 

No of 

sequences 

assigned b 

Unique 

CDR 

H3 Exact d 

Uni

que 

DHs 

IGHJ1-

6 ; 

IGHJ2-

4 

counts 

1 

IGHV1-

14*01_S

5681 

IGHV1

-

14*01_

S5681 2508 0.11 100916 7 10 10 

631 ; 

96,106 

2 

IGHV1-

27*01_S

0854 

IGHV1

-

27*01_

S0854 54 0.12 31643 3 13 9 

267 ; 

30,651 

3 

IGHV1-

30*01_S

2524 

IGHV1

-

30*01_

S2524 76 

1% ; 

14% 315 11 28 2 314 

4 

IGHV1-

14*01_S

9195 

IGHV1

-

14*01_

S9195 100 0.01 139 4 49 0 27 

5 

IGHV1-

20*01_S

4856 

IGHV1

-

20*01_

S4856 52 

1% ; 

11% 106 6 17 0 105 

6 

IGHV1-

27*01_S

2448 

IGHV1

-

27*01_

S2448 60 

No 

histogra

m NA NA NA 0 97 
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Table.3. Novel alleles discovered in Ankole breed ranked in descending order by number of 

assigned sequences. 

 Candidate 

novel allele 

Source 

of novel 

allele 

Cluste

r size a 

%differen

ce (modal) 
c 

No of 

sequences 

assigned b 

Unique 

CDR 

H3 Exact d 

Uni

que 

DHs 

IGHJ2-

4 

counts 

1 

IGHV1-

10*01_S

4971 

IGHV1

-

10*01_

S4971 118 0.09 29929 11 35 8 29205 

2 

IGHV1-

20*01_S

4389 

IGHV1

-

20*01_

S4389 60 0.09 13225 10 29 7 12862 

3 

IGHV1-

7*01_S6

322 

IGHV1

-

7*01_S

6322 454 3% ; 8% 13143 13 19 8 12454 
 

a, b The difference between the cluster size a and the number of sequences assigned b to the allele 

arises as IgDiscover generates sub-clusters from the sequences assigned to the allele, after 

which only one of those sub-clusters is used for the identification of a particular novel allele.  

c Percentage difference of sequences assigned to that allele. The distribution of the differences 

can either be shifted left (< 0.1) or right (> 0.1). Columns that have two values of percentage 

difference are an indication of a bimodal distribution.  

d The “Exact” column tells how often the sequence occur exactly, meaning with no mismatch 

and no indel. 

 

The selected African breeds have shown to have greater diversity (figure 9) through the 

increasing number of pre-germline novel alleles discovered compared to the exotic Friesian 

breed. Yet, the largest number of novel alleles identified after germline filtering by IgDiscover 

occurs in Friesian. One possible explanation for this is because the starting database is 

composed of alleles described in Holstein cows which are phylogenetically distant to African 

breeds. If a novel sequence is the same as the known germline allele, IgDiscover includes this 
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novel sequence as the output, even if the pieces of evidence are too weak. IgDiscover is less 

strict with these sequences because the presence of this sequence is enough evidence that it is 

a true allele, and so they do not get filtered out. For this reason, more novel alleles are recorded 

in the Friesian sample.   

4.3.2. Novel bovine alleles discovered by TIgGER 

TIgGER performs discovery of novel alleles in a different way than IgDiscover does, as 

described in section 3.3.2. This project was aimed at comparing the novel alleles found by the 

two tools. 

TIgGER discovered 21 novel alleles in Ndama, 15 in Boran, 1 in Ankole, and 8 in the Friesian 

breed. Out of 21 novel alleles in Ndama, 3 novel alleles were filtered out because they had 

identical nucleotide sequences. Eight novel alleles in Boran were filtered out as they had zero 

counts of unique CDR H3 and JH genes, and also, the sequences from these novel alleles were 

not present in the input data. 

The haplotype network for TIgGER output data also shows pairwise Hamming distances 

between novel alleles discovered. There are additional novel alleles that originate from the 

IGHV1-37 gene and IGHV1-39 gene (figure 12) that were not detected in the African novel 

alleles discovered by IgDiscover. IGHV1-7*01 novel allele was found only in Ankole breed 

by both tools. From the haplotype network in figure 12, the novel allele identified from 

IGHV1-37 gene in Boran is distantly related with the highest number of differences to the 

allele it is compared to. Ndama also has novel alleles that are as distant as predicted in 

IgDiscover, this will be seen later through a side-by-side comparison of Hamming distances. 

Although TIgGER discovered more novel alleles in Ndama breed, ten of the novel alleles (I - 

1I, IV-V-VI, XII-XIII, XVI-XVII-XVII) for this breed are closely related because they are 

derived from the same gene. 
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Figure 12. Haplotype networks of novel alleles discovered by TIgGER from Africa breeds. 

Colour codes are represented as green for Ankole, red for Boran and yellow for Ndama. 

 

Moreover, Boran and Ankole had four and two identical novel alleles, respectively, discovered 

by both tools. In Boran, IGHV1-17*01_S7671 (IgDiscover) was identical to IGHV1-21*02 

(TIgGER), and IGHV1-27*01_S4561 (IgDiscover) was identical to IGHV1-30*01 (TIgGER) 

at the nucleotide level. Ankole had one pair of novel alleles, namely IGHV1-7*01_S6322 

(IgDiscover) and IGHV1-7*01 (TIgGER) that were identical. 

4.3.3. Distribution of distances of novel alleles discovered by IgDiscover and TIgGER  

The pairwise Hamming distances of all novel alleles discovered from the three African breeds 

were extracted for comparison to Friesian novel allele, and quantification of genetic diversity. 

A comparison of 27 and 26 novel alleles from African breeds, together with 58 and 8 Friesian 

novel alleles detected from IgDiscover and TIgGER, respectively are represented on a 

histogram and a boxplot (Figure 12 -15).  
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The histograms show the distribution of pairwise Hamming distances of novel alleles 

discovered from IgDiscover (figure 13) and TIgGER (figure 14). Pairwise Hamming distances 

of novel alleles from the selected African breeds are observed to be shifted to the right showing 

a distinct difference between the novel alleles of African and Friesian breeds. A T-test was 

done to calculate the significance of this difference. The null hypothesis implying that there is 

no difference in the mean number of pairwise Hamming distances of African novel alleles 

versus the Friesian novel alleles and the alternative is that there is a difference. 

Table.4. Comparison of standard deviations (SD) and mean values of novel alleles of the 

selected African breeds and Friesian breed discovered by IgDiscover and TIgGER. 

 

    IgDiscover    TIgGER 

Breeds   N SD Mean   N SD Mean 

 

African  27     ±10.03 41.93   26     ±13.46 56.48  

  

Friesian  58     ±8.44 31.05   8       ±10.55 29 

 

Two sample t-test:  t = 18.936, DF = 460.76, p-value < 2.2e-16  

At α = 0.05 level of significance, there is sufficient evidence to conclude that the average 

number of pairwise Hamming distances of the selected African breeds novel germline alleles 

are different from that of Friesian germline novel alleles.  
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Figure 13. Histogram of the distribution of pairwise Hamming distances of novel alleles 

discovered by IgDiscover between the selected African breeds and Friesian breed. Twenty-

seven novel alleles from the selected African breeds and 58 novel alleles from Friesian breed 

are plotted. 

 

Figure 14. Histogram of the distribution of pairwise Hamming distances of novel alleles 

discovered by TIgGER. Twenty-six novel alleles from the selected African breeds and eight 

novel alleles from Friesian breed are plotted. 
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Figure 15. A boxplot showing Hamming distances of African novel alleles versus Friesian 

novel alleles, both discovered by IgDiscover and TIgGER. The median Hamming distance 

values for the selected African breeds are higher, 42 (IgDiscover) and 59 (TIgGER) compared 

to those of Friesian - 31 (IgDiscover) and 27.5 (TIgGER).  

The distribution of pairwise distances observed in the selected African breeds is spread out, 

showing more genetic diversity compared to Friesian, which is compact. African novel alleles 

discovered from TIgGER show outliers of short distances between 3 and 15. These outlier 

distances are as a result of differences between different alleles derived from the same gene 

(figure 15).  

Further analysis was done to measure the spread of pairwise distances of novel alleles within 

African as well as Friesian breed. This comparison showed that the pairwise distances in the 

selected African breeds had an increased magnitude of deviations with higher standard 

deviation number (Table 5) compared to the Friesian breed, from novel alleles discovered by 

both IgDiscover and TIgGER.  
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Table.5. Comparison of standard deviations (SD) and mean values for the distribution of 

pairwise Hamming distances between novel alleles within the selected African breeds and 

Friesian breed discovered by IgDiscover and TIgGER. 

 

          IgDiscover            TIgGER 

Breeds   N SD Mean   N SD Mean  

 

Ankole  3       ±12.49 34.00   1 - - 

Boran   18     ±9.31 39.67   7       ±16.14 50.19  

Friesian  58     ±8.44 31.05   8       ±10.55 29.00 

Ndama  6       ±10.72 50.60   18     ±15.28 57.80 

 

 

These pairwise distances per breed of the selected African breeds and Friesian are represented 

on a boxplot. Figure 16 shows that Ndama largely attributes the greater genetic diversity 

recorded in the selected African breeds. TIgGER seem to yield novel alleles that have many 

genetic differences compared to novel alleles identified by IgDiscover.  
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Figure 16. A boxplot showing Hamming distances of African novel alleles (per breed) versus 

Friesian novel allele both discovered by IgDiscover and TIgGER. TIgGER identified only one 

novel allele in Ankole and so it is not plotted in the figure. 
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CHAPTER 5: DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS 

5.1 Discussion  

Accurately annotating antibody repertoire sequences is important for the identification and 

classification of immunity genes utilized by an individual. This analysis can be useful in 

diagnostics or antibody therapy in diseases like lymphoma, leukaemia, and rheumatoid 

arthritis, which are malignant or autoimmune. 

Different B-cell annotation tools utilize different inputs. For instance, IMGT/HighV-QUEST 

and IgBlast use the IMGT germline database sequences as the input of annotation. In contrast, 

MiXCR uses an inbuilt library of specific germline database imported from the GenBank 

database. MiXCR and IgBlast can use other germline databases, but IMGT/HighV-QUEST is 

restricted to the IMGT germline database. These differences in the set of germline genes used 

as input are crucial, especially in downstream processes. There is always a need to benchmark 

these annotation tools to get the most accurate tool for an analysis. Currently, bovine 

immunoglobulin golden standard metadata for benchmarking has not been developed. This 

project simulated a bovine antibody repertoire for a benchmarking study. 

There is variation in the accuracy of annotation between all three tools. Modifying germline 

databases to make them fit to what is observed in real bovine repertoire data improves the 

accuracy of annotation. This analysis shows no tool performed better for DH gene annotation 

because the region is highly diverse. In calculating the percentage of incorrect calls, IgBlast 

and IMGT/HighV-QUEST have the same denominator whereas MiXCR had a different 

denominator in calculating misidentified frequencies. This difference may be accounted since 

MiXCR aligned only about 64% while IgBlast and IMGT/HighV-QUEST aligned 

approximately 99.5% of the total reads simulated. MiXCR aligned DH genes only after the V/J 

junction position is determined. Hence, if a JH gene is not identified, MiXCR can't produce 

any successful alignment, because the sequence has no complete CDR H3 sequences and 

MiXCR eliminates the sequences from further processing. For this reason, 36% of the reads 
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are unaligned, and hence no unassigned DH and JH genes are seen in MiXCR annotation 

output. Adjustments of parameters can be made for MiXCR to achieve 98% - 100% alignment 

of the reads, but this will not improve its accuracy but introduce unassigned gene calls from 

the annotation outputs.  

Misidentification of VH genes by annotation tools is mostly as a consequence of homologous 

VH genes that are similarly related at the nucleotide level. Because these tools allow for partial 

alignment in determining these VH genes, they are prone to annotating VH genes inaccurately.  

When annotating bovine VH genes, we suggest that the frequencies of the IGHV1-33 gene and 

IGHV1-21 gene be summed up because the sequences of the polymorphic IGHV1-33 gene 

cannot be differentiated from those of the IGHV1-21 gene. Therefore, for all sequences 

described as alleles of the IGHV1-21 gene, it cannot be excluded that some of these alleles 

belong exclusively to the IGHV1-33 gene. 

While using IgDiscover for allele discovery from this study, determining the number of 

iterations to run is depended on the species. Higher iterations, compared to that required for 

human repertoire data (Corcoran et al., 2016), were required to achieve a plateau, where no 

more individualized VH alleles are discovered, as assessed using pre-germline outputs per 

iteration. However, a plateau was reached sooner when assessed using the final germline 

filtered outputs, such as seen in the Ndama breed (Figure 10). The early plateau in the latter 

stage can be attributed to filtering applied to the pre-germline output. The criteria implemented 

to this filtering may need further adjustment to permit a more balanced treatment between 

species that are closely and distantly related to the input germline database.  

The germline allele prediction tools used utilize expressed IgM sequences for prediction.  

IgDiscover and TIgGER used for this discovery, enable prediction of novel germline alleles 

from BCR sequences. These tools remodel BCR data in predicting the germline alleles of a 

species. This task, however, is best achieved through sequencing of genomic DNA. Another 

caveat to this analysis is that the data used was from adult animals and therefore their mature 
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antibody repertoire, being riddled with somatically mutated BCRs, isn’t ideal for predicting 

novel germline alleles. In this study, additional analysis using naïve datasets (results not 

shown), and it was observed that, even with IgDiscover the number of iterations to make is a 

few (2 iteration was enough to predict novel alleles). Increasing the number of iterations 

resulted in discovery of the same number of alleles predicted (data not shown). Mature 

antibodies repertoires tend to have undergone somatic hypermutations, and for this reason to 

achieve a plateau phase in predicting novel allele, one has to run more iteration to achieve the 

goal. The source of these mutations is somatic hypermutation. Once an antibody is exposed to 

numerous antigens over some time mutation occurs to achieve affinity maturation.  

The distribution of pairwise Hamming distances of novel germline alleles discovered by both 

tools resulted in a precise understanding of genetic diversity between novel germline alleles 

from the selected African breeds and Friesian breed. African novel germline alleles were seen 

to be more diverse compared to Friesian breed. Ndama among the African breeds largely 

contributed to more genetic diversity seen in the selected African breeds. From these pairwise 

Hamming distances seen in the novel alleles outputs of IgDiscover and TIgGER, it is observed 

that TIgGER predicted novel alleles that are distant apart compared to novel alleles from 

IgDiscover.  

Several tools yielded concordant discoveries of some putative new germline alleles. In Boran, 

IGHV1-17*01_S7671 (IgDiscover) was identical to IGHV1-21*02 (TIgGER), and IGHV1-

27*01_S4561 (IgDiscover) was identical to IGHV1-30*01 (TIgGER) at the nucleotide level. 

These alleles have different "parent" genes yet identical. This demonstrates how closely the 

bovine VH genes are to each other related.  

Further studies are needed to refine the annotation of the IGHV1-7 gene. This gene is thought 

to give rise to ultra-long antibodies. Ultra-long CDR H3 antibodies can range from forty to 

over seventy highly diverse amino acid length and form unique β-ribbon 'stalk' and disulfide-
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bonded 'knob' structures (Wang et al., 2013). Because of these unique structures, annotation 

tools used in this study don't annotate this gene correctly. 

5.2 Conclusions and Recommendations  

In this project, benchmarking workflow was designed for bovine B-cell annotation tools based 

on frequencies of correct and incorrect antibody calls and their distribution using a simulated 

bovine dataset. Examining the performance of these tools using these metrics has given an 

insight into the level of annotation accuracy in each software. For VH gene annotation, 

IMGT/High-V-QUEST and IgBlast performed better than MiXCR, whereas MiXCR annotated 

JH genes better compared to the other two tools. More work is still needed to improve 

annotation accuracy.  

The identification of germline alleles revealed immunological diversity. The genetic diversity 

observed in African bovine breeds is yet to be documented in the online germline database in 

resources like IMGT. IgDiscover identified 18 novel alleles from Boran, 6 from Ndama, and 

3 from Ankole. TIgGER, on the other hand, discovered 7 novel alleles from Boran, 18 from 

Ndama, and 1 from Ankole breed. In using pairwise Hamming distances, the selected African 

breeds recorded high diversity. However, this study did not investigate more samples of 

African bovine breeds to examine this germline diversity. 

There is a need for more studies of germline allele discovery to be done in African breeds to 

study this diversity as a result characterizing of African breeds to get an authentic idea of 

genetic diversity in African bovine immunoglobulin. 
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